これは日々の作業を通して学んだことや毎日の生活で気づいたことをを記録しておく備忘録である。
HTML ファイル生成日時: 2024/11/21 17:40:55.112 (台灣標準時)
Matplotlib で三次元の図を作ることができると知ったので、太陽系内の惑星 と小惑星の軌道運動を可視化する動画を作ってみたでござる。 PNG 画像を作 る Python のプログラムは以下の通り。
#!/usr/pkg/bin/python3.9 # # Time-stamp: <2022/10/02 23:05:00 (CST) daisuke> # # importing sys module import sys # importing numpy module import numpy # importing astropy module import astropy import astropy.coordinates import astropy.time import astropy.units # importing astroquery module import astroquery.jplhorizons # importing matplotlib module import matplotlib.animation import matplotlib.backends.backend_agg import matplotlib.figure # output file name prefix file_prefix = 'solsys_3d_struct3' # output file name extension file_ext = 'png' # units u_au = astropy.units.au u_hr = astropy.units.hour # number of steps to calculate n_steps = 5000 # number of asteroids to plot n_asteroids = 5000 # step size in hr step_hr = 12 step_str = f'{step_hr}h' step = step_hr * u_hr # an empty list for storing asteroids positions list_asteroids = [] # date/time to start the simulation t_start_str = f'2022-07-01T00:00:00.000' # time to start the simulation in astropy.time object t_start = astropy.time.Time (t_start_str, format='isot', scale='utc') # time to stop the simulation in astropy.time object t_stop = t_start + step * n_steps # an empty list for storing major planets positions list_major = [] # major body names (Sun, Mercury, Venus, Earth, Mars, Jupiter) list_names = ['10', '199', '299', '399', '499', '599'] # getting positions of the Sun, Mercury, Venus, Earth, Mars, and Jupiter # from JPL/Horizons print (f'Now, getting positions of the Sun and planets...') for i in list_names: print (i) query = astroquery.jplhorizons.Horizons (id_type=None, id=f'{i}', \ location='@0', \ epochs={'start': t_start.iso, \ 'stop': t_stop.iso, \ 'step': step_str}) vec = query.vectors () print (vec) x = vec['x'] y = vec['y'] z = vec['z'] list_major.append ( [x, y, z] ) print (f'Finished getting positions of the Sun and planets!') # getting asteroids positions from JPL/Horizons print (f'Now, getting asteroids positions...') for i in range (1, n_asteroids + 1): if (i % 10 == 0): print (f' now, getting positions of asteroid ({i})...') ast_query = astroquery.jplhorizons.Horizons (id_type='smallbody', \ id=f'{i}', \ location='@0', \ epochs={'start': t_start.iso, \ 'stop': t_stop.iso, \ 'step': step_str}) ast_vec = ast_query.vectors () x = ast_vec['x'] y = ast_vec['y'] z = ast_vec['z'] list_asteroids.append ( [x, y, z] ) print (f'Finished getting asteroids positions...') # making a fig object using object-oriented interface fig = matplotlib.figure.Figure () fig.subplots_adjust (left=0.0, right=1.0, bottom=0.0, top=1.0) # making a canvas object canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig) # making an axes object ax = fig.add_subplot (111, projection='3d') # an empty list of frames for animation list_frame = [] # definition of a function for making a sphere def make_sphere (x_c, y_c, z_c, radius, colour): u = numpy.linspace (0, 2 * numpy.pi, 1000) v = numpy.linspace (0, numpy.pi, 1000) x = radius * numpy.outer (numpy.cos(u), numpy.sin(v)) + x_c y = radius * numpy.outer (numpy.sin(u), numpy.sin(v)) + y_c z = radius * numpy.outer (numpy.ones(numpy.size(u)), numpy.cos(v)) + z_c # plotting the surface sphere = ax.plot_surface (x, y, z, color=colour, antialiased=False, \ shade=True, rcount=100, ccount=100) return (sphere) # initial value of 'elev' angle el0 = 90.0 # initial value of 'azim' angle az0 = 0.0 for i in range (n_steps): # clearing previous axes ax.cla () # camera viewing angle if (i < 200): el = el0 az = az0 elif ( (i >= 200) and (i < 1400) ): el = el0 - (i - 200) * 0.1 az = az0 elif ( (i >= 1400) and (i < 1600) ): el = -30.0 az = az0 elif ( (i >= 1600) and (i < 1900) ): el = -30 + (i - 1600) * 0.1 az = az0 elif ( (i >= 1900) and (i < 2100) ): el = 0.0 az = az0 elif ( (i >= 2100) and (i < 2700) ): el = (i - 2100) * 0.1 az = az0 elif ( (i >= 2700) and (i < 3600) ): el = 60.0 az = 360.0 - (i - 2700) * 0.1 elif ( (i >= 3600) and (i < 3800) ): el = 60.0 az = 270.0 elif ( (i >= 3800) and (i < 4700) ): el = 60.0 az = 270.0 - (i - 3800) * 0.1 else: el = 60.0 az = 180.0 # time t t = t_start + i * 12.0 * u_hr # printing positions of the Sun, planets, and asteroids if (i % 10 == 0): print (f'Now, making a plot for {t}...') # settings for plot ax.set_xlim (-6.0, +6.0) ax.set_ylim (-6.0, +6.0) ax.set_zlim (-2.0, +2.0) ax.set_box_aspect ( (6.0, 6.0, 2.0) ) # viewing angles of camera ax.view_init (elev=el, azim=az) # using black background colour fig.set_facecolor ('black') ax.set_facecolor ('black') ax.grid (False) ax.w_xaxis.set_pane_color ((0.0, 0.0, 0.0, 0.0)) ax.w_yaxis.set_pane_color ((0.0, 0.0, 0.0, 0.0)) ax.w_zaxis.set_pane_color ((0.0, 0.0, 0.0, 0.0)) # plotting the Sun sun = make_sphere (list_major[0][0][i], \ list_major[0][1][i], \ list_major[0][2][i], \ 0.25, 'yellow') # plotting Mercury mercury = make_sphere (list_major[1][0][i], \ list_major[1][1][i], \ list_major[1][2][i], \ 0.05, 'cyan') # plotting Venus venus = make_sphere (list_major[2][0][i], \ list_major[2][1][i], \ list_major[2][2][i], \ 0.15, 'gold') # plotting Earth earth = make_sphere (list_major[3][0][i], \ list_major[3][1][i], \ list_major[3][2][i], \ 0.15, 'blue') # plotting Mars mars = make_sphere (list_major[4][0][i], \ list_major[4][1][i], \ list_major[4][2][i], \ 0.15, 'red') # plotting Jupiter jupiter = make_sphere (list_major[5][0][i], \ list_major[5][1][i], \ list_major[5][2][i], \ 0.15, 'bisque') # plotting asteroids for j in range (0, n_asteroids): asteroid = ax.scatter (list_asteroids[j][0][i], \ list_asteroids[j][1][i], \ list_asteroids[j][2][i], \ s=0.1, \ color='saddlebrown') # title title = ax.text2D (0.5, 0.95, f'Inner Solar System', \ color='white', \ horizontalalignment='center', \ transform=ax.transAxes) # plotting the time time = ax.text2D (0.5, 0.05, f'Date/Time: {t} (UTC)', \ color='white', \ horizontalalignment='center', \ transform=ax.transAxes) # image file file_image = f'{file_prefix}_{i:06d}.{file_ext}' fig.savefig (file_image, dpi=255)
実行すると、多数の PNG ファイルができるので、 ffmpeg を使って動画にす ればよいでござる。
% ffmpeg5 -f image2 -start_number 0 -framerate 30 -i solsys_3d_struct3_%06d.png \ -an -vcodec libx264 -pix_fmt yuv420p -threads 8 solsys_3d_struct3.mp4
出来上がった動画は以下のものでござる。