これは日々の作業を通して学んだことや毎日の生活で気づいたことをを記録しておく備忘録である。
HTML ファイル生成日時: 2024/12/05 07:26:42.662 (台灣標準時)
ルンゲクッタを使って、軌道積分をしてみたでござる。コードは以下の通りに ござる。 scipy.integrate に含まれている solve_ivp () という関数を使っ たでござる。
#!/usr/pkg/bin/python3.9 # # Time-stamp: <2022/05/01 16:14:03 (CST) daisuke> # # importing argparse module import argparse # importing sys module import sys # importing numpy module import numpy # importing scipy module import scipy.integrate # importing matplotlib module import matplotlib.figure import matplotlib.backends.backend_agg # initialising a parser desc = 'Keplerian motion' parser = argparse.ArgumentParser (description=desc) # adding arguments parser.add_argument ('-x0', '--x0', type=float, default=1.0, help='initial position in X (default: 1 au)') parser.add_argument ('-y0', '--y0', type=float, default=0.0, help='initial position in Y (default: 0 au)') parser.add_argument ('-vx0', '--vx0', type=float, default=0.0, help='initial velocity in X (default: 0 sqrt(GM)') parser.add_argument ('-vy0', '--vy0', type=float, default=1.0, help='initial velocity in Y (default: 1 sqrt(GM))') parser.add_argument ('-M', '--M', type=float, default=1.0, help='mass of star (default: 1 solar mass)') parser.add_argument ('-t', '--time', type=float, default=100.0, help='time of simulation (default: 100 yr)') parser.add_argument ('-i', '--interval', type=float, default=0.01, help='time interval of image creation (default: 0.01 yr)') parser.add_argument ('-r', '--resolution', type=int, default=225, \ help='resolution of output file (default: 225 dpi)') parser.add_argument ('-o', '--output', default='', \ help='output PNG file prefix') # parsing arguments args = parser.parse_args () # parameters qx0 = args.x0 qy0 = args.y0 vx0 = args.vx0 vy0 = args.vy0 Mstar = args.M time_end = args.time dt = args.interval resolution = args.resolution output_prefix = args.output # check of output_prefix if (output_prefix == ''): print ("ERROR: output file prefix must be given!") sys.exit () # # constants # # unit of time: year # unit of distance: au # gravitational constant GM = 4.0 * numpy.pi * numpy.pi # # equation of motion # def eqmo (t, y): dy = numpy.zeros_like (y) r_cubed = ( y[0]**2 + y[2]**2 )**1.5 dy[0] = y[1] dy[1] = -GM * y[0] / r_cubed dy[2] = y[3] dy[3] = -GM * y[2] / r_cubed return dy # time to write position and velocity n_step = int (time_end / dt) + 1 t_eval = numpy.linspace (0.0, time_end, n_step) # initial values y_init = (qx0, vx0 * numpy.sqrt (GM), qy0, vy0 * numpy.sqrt (GM)) # orbital integration sol = scipy.integrate.solve_ivp (eqmo, [0.0, time_end], y_init, \ t_eval=t_eval, dense_output=True, \ rtol=10**-6, atol=10**-9) # results (positions and velocities) qx = sol.y[0] qy = sol.y[2] vx = sol.y[1] vy = sol.y[3] # finding maximum and minimum values qx_min = +10**10 qx_max = -10**10 qy_min = +10**10 qy_max = -10**10 for i in range ( len (qx) ): if (qx[i] < qx_min): qx_min = qx[i] if (qx[i] > qx_max): qx_max = qx[i] if (qy[i] < qy_min): qy_min = qy[i] if (qy[i] > qy_max): qy_max = qy[i] list_maxmin = [abs (qx_min), abs (qx_max), abs (qy_min), abs (qy_max)] sorted_maxmin = sorted (list_maxmin) x_min = -1.0 * sorted_maxmin[-1] * 1.2 x_max = +1.0 * sorted_maxmin[-1] * 1.2 y_min = -1.0 * sorted_maxmin[-1] * 1.2 y_max = +1.0 * sorted_maxmin[-1] * 1.2 # making plots for i in range ( len (qx) ): print ("%08d %8.4f %8.4f %8.4f %8.4f" % (i, qx[i], qy[i], vx[i], vy[i]) ) # output file name file_output = "%s_%08d.png" % (output_prefix, i) # # plotting using Matplotlib # # making objects "fig" and "ax" fig = matplotlib.figure.Figure () matplotlib.backends.backend_agg.FigureCanvasAgg (fig) ax = fig.add_subplot (111) # axes ax.set_title ('Planetary Motion') ax.set_xlabel ('X [au]') ax.set_ylabel ('Y [au]') ax.set_xlim (x_min, x_max) ax.set_ylim (y_min, y_max) ax.set_aspect ('equal') # plotting a figure ax.plot (0.0, 0.0, color='yellow', marker='o', markersize=10, \ label='star') if (i < 100): for j in range (i): ax.plot (qx[j], qy[j], color='cyan', marker='o', markersize=3, \ alpha=j/i) else: for j in range (100): ax.plot (qx[i-j], qy[i-j], color='cyan', marker='o', markersize=3, \ alpha=1.0-j/100.0) ax.plot (qx[0:i], qy[0:i], color='black', marker=',', alpha=0.5) ax.plot (qx[i], qy[i], color='green', marker='o', markersize=5, \ label='planet') text_time = "Time: %8.2f year" % (i * dt) text_initial = "Initial conditions" text_mass = "mass of star = %5.2f solar mass" % (Mstar) text_iq = "(qx0, qy0) = (%4.2f au, %4.2f au)" \ % (qx0, qy0) text_iv = "(vx0, vy0) = (%4.2f au/yr, %4.2f au/yr)" \ % (vx0 * numpy.sqrt (GM), vy0 * numpy.sqrt (GM)) ax.text (0.03, 0.95, text_time, transform=ax.transAxes) ax.text (0.03, 0.18, text_initial, transform=ax.transAxes) ax.text (0.05, 0.13, text_mass, transform=ax.transAxes) ax.text (0.05, 0.08, text_iq, transform=ax.transAxes) ax.text (0.05, 0.03, text_iv, transform=ax.transAxes) ax.legend () # saving the figure to a file fig.savefig (file_output, dpi=resolution)
例えば、以下のように実行すればよいでござる。
% chmod a+x kepler_00.py % ./kepler_00.py -h usage: kepler_00.py [-h] [-x0 X0] [-y0 Y0] [-vx0 VX0] [-vy0 VY0] [-M M] [-t TIME] [-i INTERVAL] [-r RESOLUTION] [-o OUTPUT] Keplerian motion optional arguments: -h, --help show this help message and exit -x0 X0, --x0 X0 initial position in X (default: 1 au) -y0 Y0, --y0 Y0 initial position in Y (default: 0 au) -vx0 VX0, --vx0 VX0 initial velocity in X (default: 0 sqrt(GM) -vy0 VY0, --vy0 VY0 initial velocity in Y (default: 1 sqrt(GM)) -M M, --M M mass of star (default: 1 solar mass) -t TIME, --time TIME time of simulation (default: 100 yr) -i INTERVAL, --interval INTERVAL time interval of image creation (default: 0.01 yr) -r RESOLUTION, --resolution RESOLUTION resolution of output file (default: 225 dpi) -o OUTPUT, --output OUTPUT output PNG file prefix % ./kepler_00.py -o orb -vy0 1.3
多数の PNG ファイルができるので、それらを使って動画を作れば完成にござる。
% ffmpeg5 -f image2 -start_number 0 -framerate 30 -i orb_%08d.png \ ? -an -vcodec libx264 -pix_fmt yuv420p -threads 12 orb_no_audio.mp4 % ffmpeg5 -i orb_no_audio.mp4 -i foo.f251.webm -c:v copy orb_with_audio.mp4
完成した動画は以下の通り。