Astroinformatics 2022 Session 04: Using Matplotlib

Kinoshita Daisuke

03 October 2022 publicly accessible version

About this file...

- Important information about this file
 - $\circ~$ The author of this file is Kinoshita Daisuke.
 - The original version of this file was used for the course "Astroinformatics" (course ID: AS6095) offered at Institute of Astronomy, National Central University from September 2022 to January 2023.
 - $\circ~$ The file is provided in the hope that it will be useful, but there is no guarantee for the correctness. Use this file at your own risk.
 - $\circ\,$ If you are willing to use this file for your study, please feel free to use. I'll be very happy to receive feedback from you.
 - If you are willing to use this file for your teaching, please contact to Kinoshita Daisuke. When you use this file partly or entirely, please mention clearly that the author of the original version is Kinoshita Daisuke. Please help me to improve the contents of this file by sending your feedback.
 - Contact address: https://www.instagram.com/daisuke23888/

For this session, we make various types of plots using Matplotlib.

1 Sample Python scripts for this session

Sample Python scripts for this session can be downloaded from GitHub repository. Visit following GitHub repository.

• https://github.com/kinoshitadaisuke/ncu_astroinformatics_202209

1.1 Executing sample Python scripts on a terminal emulator

If you prefer to execute sample Python scripts for this session on a terminal emulator, download .py files from GitHub repository.

1.2 Executing sample Python scripts on JupyterLab

If you prefer to execute sample Python scripts for this session on JupyterLab (or Jupyter Notebook), download .ipynb file from GitHub repository.

1.3 Executing sample Python scripts using Binder

If you prefer to execute sample Python scripts for this session on Binder, visit following web page.

• https://mybinder.org/v2/gh/kinoshitadaisuke/ncu_astroinformatics_202209/HEAD

Start your favourite web browser and go to above web page. (Fig. 1) In a minute or two, you see JupyterLab working on your web browser. (Fig. 2) Go to the directory (folder) "s04". (Fig. 3) Choose the file "ai202209_s04.ipynb" (Fig. 4 and 5) and open it (Fig. 6).

		Binder — Mozilla Firefox							\times
Binder	×	÷							
$\leftarrow \rightarrow G$		A: https://mybinder.org/v2/gh/kinoshitadaisuke/ncu_astroinformatics_202209/HEAD				☆		0 1	=
		Thanks to Google Cloud, OVH, GESIS Notebooks and the Turing Institute for supporting us!					🕮 Donate to myt	pinder.orgi	
		8 binder							
		Starting repository:							
	kinoshitadaisuke/ncu_astroinformatics_202209/HEAD								- 1
	New to Binder? Check out the Binder Documentation for more information.								- 1
									- 1
	Build	logs				view raw show			
		Here's a non-interactive preview on novelenew while we start a server for you. Your binder will open automatically when it is ready.							
		JUPYTER JUPYTER FA	4a O	\$					
		ncu_astroinformatics_202209							
		Name							
		🕊 kinoshitadaisuke's repositories							
		📚 s01							
		► LICENSE							
		C BEADME md							

Figure 1: Using Binder to execute sample Python scripts for this session.

Figure 2: Using Binder to execute sample Python scripts for this session.

Figure 3: Using Binder to execute sample Python scripts for this session.

Figure 4: Using Binder to execute sample Python scripts for this session.

Figure 5: Using Binder to execute sample Python scripts for this session.

Figure 6: Using Binder to execute sample Python scripts for this session.

2 About Matplotlib

Matplotlib is the de facto standard library for high quality scientific visualisation. Various types of publication quality plots can be created by using Matplotlib. In addition to static plots, animations and interactive plots can also be created by Matplotlib. Visit the official website of Matplotlib to learn about it. (Fig. 7, 8, 9, 10, 11, 12, 13, and 14)

- Matplotlib: https://matplotlib.org/
 - Documentation for version 3.6: https://matplotlib.org/stable/
 - Cheatsheets and handouts: https://matplotlib.org/cheatsheets/
 - Examples: https://matplotlib.org/stable/gallery/
 - o Tutorials: https://matplotlib.org/stable/tutorials/
 - Users guide: https://matplotlib.org/stable/users/

Figure 7: The official website of Matplotlib.

3 Matplotlib APIs

Matplotlib offers several different APIs (Application Programming Interfaces) for making plots. Two major APIs are "implicit pyplot interface" and "explicit Axes interface" (or "object-oriented interface").

3.1 Making a plot using implicit pyplot interface

Here is an example of making a plot using implicit pyplot interface.

```
Python Code 1: ai202209_s04_00.py
```

```
#!/usr/pkg/bin/python3.9
#
# Time-stamp: <2022/10/01 13:09:20 (CST) daisuke>
#
# importing matplotlib module
```


Figure 8: The documentation page of the official website of Matplotlib.

Figure 9: The cheatsheets and handouts of Matplotlib.

Figure 10: The cheatsheet of Matplotlib.

Figure 11: The handout for beginners of Matplotlib.

Figure 12: The examples page of the official website of Matplotlib.

	Tutorials — Matplotlib 3.6.0 documentation — Mozilla Firefox	×					
S Tutorials — Matplotlib 3.6× +							
← → C O A https://	C O A https://matplotlib.org/stable/tutorials/index.html						
matpletlib	Plot types Examples Tutorials Reference User guide Develop Release notes Q	stable - IIII D O Y					
Section Navigation Introductory Intermediate Advanced Colors Provisional Text	 Tutorials This page contains more in-depth guides for using Matplotlib. It is broken up into beginner, intermediate, and advanced sections, as well as sections covering specific topics. For shorter examples, see our examples page. You can also find external resources and a FAQ in our user guide. 	Introductory Intermediate Advanced Colors Provisional Text Toolkits					
Toolkits	 Introductory These tutorials cover the basics of creating visualizations with Matplotlib, as well as some best-practices in using the package effectively. Image tutorial Image tutorial Image tutorial 	Show Source					

Figure 13: The tutorials page of the official website of Matplotlib.

Figure 14: The users guide of the official website of Matplotlib.

```
import matplotlib.pyplot
# data to be plotted
data_x = [1.0, 2.0, 3.0, 4.0, 5.0]
data_y = [3.0, 2.0, 5.0, 1.0, 4.0]
# output file name
file_output = 'ai202209_s04_00.png'
#
# for making a plot using implicit pyplot interface, we call some functions
#
# making a plot using procedural pyplot interface
matplotlib.pyplot.plot (data_x, data_y, label="Sample data")
# adding legend to the plot
matplotlib.pyplot.legend ()
# saving a plot as a file
matplotlib.pyplot.savefig (file_output)
```

Execute above script.

```
% ./ai202209_s04_00.py
% ls -l *.png
-rw-r--r- 1 daisuke taiwan 25675 Oct 1 12:27 ai202209_s04_00.png
```

Display the PNG image file. (15)

% feh -dF ai202209_s04_00.png

Figure 15: Plot created by the script ai202209_s04_00.py.

Try following practice.

Practice 04-01

Make your own Python script to create a plot using implicit pyplot interface of Matplotlib.

3.2 Making a plot using explicit Axes interface

Here is an example of making a plot using explicit Axes interface.

```
Python Code 2: ai202209_s04_01.py
```

```
#!/usr/pkg/bin/python3.9
#
# Time-stamp: <2022/10/01 13:09:37 (CST) daisuke>
#
# importing matplotlib module
import matplotlib.pyplot
# data to be plotted
data_x = [1.0, 2.0, 3.0, 4.0, 5.0]
data_y = [3.0, 2.0, 5.0, 1.0, 4.0]
# output file name
file_output = 'ai202209_s04_01.png'
#
# for making a plot using object-oriented interface,
```

```
# we first construct "fig" and "axes" objects,
# and then use methods for these "fig" and "axes".
#
# making a fig object using matplot.pyplot.figure function
fig = matplotlib.pyplot.figure ()
# constructing an axes object using object-oriented interface
ax = fig.add_subplot (111)
# making a plot using object-oriented interface
ax.plot (data_x, data_y, label='Sample data')
# adding legend to the plot
ax.legend ()
# saving a plot as a file
fig.savefig (file_output)
```

```
% ./ai202209_s04_01.py
% ls -l *.png
-rw-r--r-- 1 daisuke taiwan 25675 Oct 1 12:50 ai202209_s04_00.png
-rw-r--r-- 1 daisuke taiwan 25675 Oct 1 13:01 ai202209_s04_01.png
```

Display the PNG image file. (16)

```
% feh -dF ai202209_s04_01.png
```

Try following practice.

Practice 04-02

Make your own Python script to create a plot using explicit Axes interface of Matplotlib. (Note: Construct "fig" object using the function "matplotlib.pyplot.figure ()", and then construct "axes" object using ".add_subplot ()" method.)

Here is one more example of making a plot using explicit Axes interface.

```
Python Code 3: ai202209_s04_02.py
```

```
#!/usr/pkg/bin/python3.9
#
# Time-stamp: <2022/10/02 23:36:26 (CST) daisuke>
#
# importing matplotlib module
import matplotlib.pyplot
# data to be plotted
data_x = [1.0, 2.0, 3.0, 4.0, 5.0]
data_y = [3.0, 2.0, 5.0, 1.0, 4.0]
# output file name
file_output = 'ai202209_s04_02.png'
```


Figure 16: Plot created by the script ai202209_s04_01.py.

```
# for making a plot using object-oriented interface,
# we first construct "fig" and "axes" objects,
# and then use methods for these "fig" and "axes".
#
# making a fig and an axes objects using matplot.pyplot.subplots function
fig, ax = matplotlib.pyplot.subplots ()
# making a plot using object-oriented interface
ax.plot (data_x, data_y, label='Sample data')
# adding legend to the plot
ax.legend ()
# saving a plot as a file
fig.savefig (file_output)
```

```
%
 ./ai202209_s04_02.py
% ls -l *.png
                                            1 12:50 ai202209_s04_00.png
            1 daisuke
                        taiwan
                                25675 Oct
-rw-r--r--
                                25675 Oct
                                            1 13:01 ai202209_s04_01.png
            1 daisuke
                        taiwan
            1 daisuke
                                25675 Oct
                                            1 13:02 ai202209_s04_02.png
                        taiwan
```

Display the PNG image file. (17)

% feh -dF ai202209_s04_02.png

Figure 17: Plot created by the script ai202209_s04_02.py.

Try following practice.

Practice 04-03 Make your own Python script to create a plot using explicit Axes interface of Matplotlib. (Note: Use

"matplotlib.pyplot.subplots ()" function to construct both "fig" object and "axes" object at once.)

3.3 Making a plot using pure object-oriented interface

Here is an example of making a plot using pure object-oriented interface.

```
Python Code 4: ai202209_s04_03.py
```

```
#!/usr/pkg/bin/python3.9
#
# Time-stamp: <2022/10/01 13:10:13 (CST) daisuke>
#
# importing matplotlib module
import matplotlib.backends.backend_agg
import matplotlib.figure
# data to be plotted
data_x = [1.0, 2.0, 3.0, 4.0, 5.0]
data_y = [3.0, 2.0, 5.0, 1.0, 4.0]
```

```
# output file name
file_output = 'ai202209_s04_03.png'
# for making a plot using object-oriented interface,
 we first construct "fig" and "axes" objects,
 and then use methods for these "fig" and "axes".
# making a fig object
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111)
# making a plot using object-oriented interface
ax.plot (data_x, data_y, label='Sample data')
# adding legend to the plot
ax.legend ()
# saving a plot as a file
fig.savefig (file_output)
```

```
% ./ai202209_s04_03.py
% ls -l *.png
-rw-r--r-- 1 daisuke taiwan 25675 Oct 1 12:50 ai202209_s04_00.png
-rw-r--r-- 1 daisuke taiwan 25675 Oct 1 13:01 ai202209_s04_01.png
-rw-r--r-- 1 daisuke taiwan 25675 Oct 1 13:02 ai202209_s04_02.png
-rw-r--r-- 1 daisuke taiwan 25675 Oct 1 13:07 ai202209_s04_03.png
```

Display the PNG image file. (18)

% feh -dF ai202209_s04_03.png

Try following practice.

Practice 04-04

Make your own Python script to create a plot using pure object-oriented interface of Matplotlib. (Note: Construct "fig" object using "matplotlib.figure.Figure ()", and then construct "axes" object using ".add_subplot ()" method.)

3.4 A note on Matplotlib APIs for this course

There are several different Matplotlib APIs. Explicit Axes interface enables us to customise a plot and give fine adjustments. For this course, we use explicit Axes interface for making plots.

For more information about Matplotlib APIs, read following documents.

- https://matplotlib.org/stable/api/
- https://matplotlib.org/stable/users/explain/api_interfaces.html

Figure 18: Plot created by the script ai202209_s04_03.py.

- https://matplotlib.org/matplotblog/posts/pyplot-vs-object-oriented-interface/
- https://matplotlib.org/2.2.5/gallery/api/agg_oo_sgskip.html
- https://matplotlib.org/stable/gallery/user_interfaces/canvasagg.html

4 Plotting a line

Make a plot of a straight line. Here is an example.

```
Python Code 5: ai202209_s04_04.py
```

```
#!/usr/pkg/bin/python3.9
#
# Time-stamp: <2022/10/01 21:55:57 (CST) daisuke>
#
# importing numpy module
import numpy
# importing matplotlib module
import matplotlib.backends.backend_agg
import matplotlib.figure
# data to be plotted
data_x = numpy.linspace (0.0, 10.0, 1001)
data_y = 3.0 * data_x + 5.0
# output file name
```

```
file_output = 'ai202209_s04_04.png'
# making a fig object
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111)
# making a plot using object-oriented interface
ax.plot (data_x, data_y, label='f(x) = 3x + 5')
# setting ranges of x-axis and y-axis
ax.set_xlim (-1.0, +11.0)
ax.set_ylim (0.0, +40.0)
# setting labels for x-axis and y-axis
ax.set_xlabel ('$x$ [arbitrary unit]')
ax.set_ylabel ('$y$ [arbitrary unit]')
# adding legend to the plot
ax.legend ()
# saving a plot as a file
fig.savefig (file_output)
```

```
% ./ai202209_s04_04.py
% ls -l *.png
-rw-r--r-- 1 daisuke taiwan
                              25675 Oct 1 13:09 ai202209_s04_00.png
-rw-r--r- 1 daisuke taiwan 25675 Oct 1 13:09 ai202209_s04_01.png
-rw-r--r-- 1 daisuke taiwan
                              25675 Oct 1 13:09 ai202209_s04_02.png
                                         1 13:10 ai202209_s04_03.png
-rw-r--r--
          1 daisuke
                      taiwan
                              25675 Oct
           1 daisuke
-rw-r--r--
                      taiwan
                              21634 Oct
                                         1 21:55 ai202209_s04_04.png
```

Display the PNG image file. (19)

% feh -dF ai202209_s04_04.png

Try following practice.

Practice 04-05

Make your own Python script to create a plot of a straight line f(x) = -2x + 25.

5 Plotting a curve

Make a plot of a curve. Here is an example.

Python Code 6: ai202209_s04_05.py

```
#!/usr/pkg/bin/python3.9
```


Figure 19: Plot created by the script ai202209_s04_04.py.

```
Time-stamp: <2022/10/01 22:03:58 (CST) daisuke>
#
#
# importing numpy module
import numpy
# importing matplotlib module
import matplotlib.backends.backend_agg
import matplotlib.figure
# data to be plotted
data_x = numpy.linspace (0.0, 10.0, 1001)
data_y = 2.0 * (data_x - 5.0) * * 2 + 3.0
# output file name
file_output = 'ai202209_s04_05.png'
# making a fig object
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111)
# making a plot using object-oriented interface
ax.plot (data_x, data_y, label='f(x) = 2(x-5)^2 + 3')
```

```
# setting ranges of x-axis and y-axis
ax.set_xlim (-1.0, +11.0)
ax.set_ylim (0.0, +70.0)
# setting labels for x-axis and y-axis
ax.set_xlabel ('$x$ [arbitrary unit]')
ax.set_ylabel ('$y$ [arbitrary unit]')
# adding legend to the plot
ax.legend ()
# saving a plot as a file
fig.savefig (file_output)
```

```
% ./ai202209_s04_05.py
% ls -l *.png
-rw-r--r-- 1 daisuke taiwan
                              25675 Oct 1 13:09 ai202209_s04_00.png
-rw-r--r-- 1 daisuke
                     taiwan
                              25675 Oct 1 13:09 ai202209_s04_01.png
-rw-r--r-- 1 daisuke taiwan
                              25675 Oct 1 13:09 ai202209_s04_02.png
                              25675 Oct 1 13:10 ai202209_s04_03.png
-rw-r--r-- 1 daisuke taiwan
                              21634 Oct 1 21:55 ai202209_s04_04.png
-rw-r--r-- 1 daisuke
                     taiwan
                             25102 Oct
                                        1 22:02 ai202209_s04_05.png
-rw-r--r--
           1 daisuke taiwan
```

Display the PNG image file. (20)

```
% feh -dF ai202209_s04_05.png
```

Try following practice.

Practice 04-06

Make your own Python script to create a plot of a curve $f(x) = -3(x+4)^2 + 20$.

6 Plotting a sine curve

Make a plot of a sine curve. Here is an example. Following example sets ticks for x and y axes. It also shows grid on the plot.

```
Python Code 7: ai202209_s04_06.py
```

```
#!/usr/pkg/bin/python3.9
#
# Time-stamp: <2022/10/01 22:15:28 (CST) daisuke>
#
# importing numpy module
import numpy
# importing matplotlib module
import matplotlib.backends.backend_agg
import matplotlib.figure
# data to be plotted
```

KINOSHITA Daisuke

Figure 20: Plot created by the script ai202209_s04_05.py.

```
data_x = numpy.linspace (0.0, 720.0, 7201)
data_y = numpy.sin ( numpy.deg2rad (data_x) )
# output file name
file_output = 'ai202209_s04_06.png'
# making a fig object
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111)
# making a plot using object-oriented interface
ax.plot (data_x, data_y, label='f(x) = \sin(x)')
# setting ranges of x-axis and y-axis
ax.set_xlim (0.0, +720.0)
ax.set_ylim (-1.2, +1.2)
# setting labels for x-axis and y-axis
ax.set_xlabel ('$x$ [deg]')
ax.set_ylabel ('$y$')
# setting ticks
ax.set_xticks (numpy.linspace (0.0, 720.0, 9))
```

```
ax.set_yticks (numpy.linspace (-1.0, +1.0, 11))
# showing grid
ax.grid ()
# adding legend to the plot
ax.legend ()
# saving a plot as a file
fig.savefig (file_output)
```

```
% ./ai202209_s04_06.py
% ls -l *.png
-rw-r--r-- 1 daisuke taiwan
                              25675 Oct 1 13:09 ai202209_s04_00.png
-rw-r--r-- 1 daisuke taiwan
                             25675 Oct 1 13:09 ai202209_s04_01.png
          1 daisuke taiwan 25675 Oct 1 13:09 ai202209_s04_02.png
-rw-r--r--
-rw-r--r-- 1 daisuke taiwan 25675 Oct 1 13:10 ai202209_s04_03.png
-rw-r--r-- 1 daisuke taiwan
                              21634 Oct 1 21:55 ai202209_s04_04.png
-rw-r--r--
           1 daisuke
                     taiwan
                             25102 Oct
                                        1 22:02 ai202209_s04_05.png
          1 daisuke taiwan
                             30436 Oct
                                        1 22:15 ai202209_s04_06.png
-rw-r--r--
```

Display the PNG image file. (21)

```
% feh -dF ai202209_s04_06.png
```

Try following practice.

Practice 04-07

Make your own Python script to create a plot of a cosine curve $f(x) = 2\cos(x - 90^\circ)$.

7 Plotting a circle

Make a plot of a circle. Here is an example.

```
Python Code 8: ai202209_s04_07.py
```

```
#!/usr/pkg/bin/python3.9
#
# Time-stamp: <2022/10/01 22:29:43 (CST) daisuke>
#
# importing numpy module
import numpy
# importing matplotlib module
import matplotlib.backends.backend_agg
import matplotlib.figure
# data to be plotted
radius = 3.0
theta = numpy.linspace (0.0, 2.0 * numpy.pi, 1001)
data_x = radius * numpy.cos (theta)
data_y = radius * numpy.sin (theta)
```


Figure 21: Plot created by the script ai202209_s04_06.py.

```
# output file name
file_output = 'ai202209_s04_07.png'
# making a fig object
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111)
# making a plot using object-oriented interface
ax.plot (data_x, data_y, label='circle of radius 3')
# setting ranges of x-axis and y-axis
ax.set_xlim (-4.0, +4.0)
ax.set_ylim (-4.0, +4.0)
# setting labels for x-axis and y-axis
ax.set_xlabel ('$x$')
ax.set_ylabel ('$y$')
# setting ticks
ax.set_xticks (numpy.linspace (-4.0, +4.0, 9))
ax.set_yticks (numpy.linspace (-4.0, +4.0, 9))
```

```
# showing grid
ax.grid ()
# setting aspect ratio
ax.set_aspect ('equal', 'box')
# adding legend to the plot
ax.legend ()
# saving a plot as a file
fig.savefig (file_output)
```

```
% ./ai202209_s04_07.py
% ls -l *.png
-rw-r--r-- 1 daisuke
                      taiwan
                              25675 Oct 1 13:09 ai202209_s04_00.png
           1 daisuke taiwan 25675 Oct 1 13:09 ai202209_s04_01.png
-rw-r--r--
-rw-r--r-- 1 daisuke taiwan
                             25675 Oct 1 13:09 ai202209_s04_02.png
-rw-r--r-- 1 daisuke taiwan
                              25675 Oct 1 13:10 ai202209_s04_03.png
-rw-r--r--
          1 daisuke
                     taiwan
                              21634 Oct 1 21:55 ai202209_s04_04.png
          1 daisuke taiwan
                              25102 Oct 1 22:02 ai202209_s04_05.png
-rw-r--r--
-rw-r--r-- 1 daisuke taiwan
                              30436 Oct 1 22:15 ai202209_s04_06.png
                              23172 Oct 1 22:29 ai202209_s04_07.png
-rw-r--r-- 1 daisuke taiwan
```

Display the PNG image file. (22)

```
% feh -dF ai202209_s04_07.png
```

Try following practice.

Practice 04-08

Make your own Python script to create a plot of an ellipse.

8 Plotting multiple lines/curves

Make a plot of multiple lines/curves. Here is an example.

```
Python Code 9: ai202209_s04_08.py
```

```
#!/usr/pkg/bin/python3.9
#
# Time-stamp: <2022/10/01 22:49:30 (CST) daisuke>
#
# importing numpy module
import numpy
# importing matplotlib module
import matplotlib.backends.backend_agg
import matplotlib.figure
# data to be plotted
data_x = numpy.linspace (-360.0, +360.0, 10**4)
data_sin = numpy.sin ( numpy.deg2rad (data_x) )
```


Figure 22: Plot created by the script ai202209_s04_07.py.

```
data_cos = numpy.cos ( numpy.deg2rad (data_x) )
# output file name
file_output = 'ai202209_s04_08.png'
# making a fig object
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111)
# making a plot using object-oriented interface
ax.plot (data_x, data_sin, label='sine curve')
ax.plot (data_x, data_cos, label='cosine curve')
# setting ranges of x-axis and y-axis
ax.set_xlim (-360.0, +360.0)
ax.set_ylim (-1.2, +1.2)
# setting labels for x-axis and y-axis
ax.set_xlabel ('$x$ [deg]')
ax.set_ylabel ('$y$')
# setting ticks
ax.set_xticks (numpy.linspace (-360.0, +360.0, 9))
```

```
ax.set_yticks (numpy.linspace (-1.0, +1.0, 5))
# showing grid
ax.grid ()
# adding legend to the plot
ax.legend ()
# saving a plot as a file
fig.savefig (file_output)
```

```
% ./ai202209_s04_08.py
% ls -l *.png
-rw-r--r-- 1 daisuke taiwan
                             25675 Oct 1 13:09 ai202209_s04_00.png
-rw-r--r- 1 daisuke taiwan 25675 Oct 1 13:09 ai202209_s04_01.png
-rw-r--r- 1 daisuke taiwan 25675 Oct 1 13:09 ai202209_s04_02.png
-rw-r--r-- 1 daisuke taiwan 25675 Oct 1 13:10 ai202209_s04_03.png
-rw-r--r-- 1 daisuke taiwan
                             21634 Oct 1 21:55 ai202209_s04_04.png
-rw-r--r-- 1 daisuke
                     taiwan
                             25102 Oct 1 22:02 ai202209_s04_05.png
-rw-r--r- 1 daisuke taiwan 30436 Oct 1 22:15 ai202209_s04_06.png
-rw-r--r-- 1 daisuke taiwan
                             23172 Oct 1 22:29 ai202209_s04_07.png
                             39369 Oct 1 22:46 ai202209_s04_08.png
-rw-r--r-- 1 daisuke taiwan
```

Display the PNG image file. (23)

```
% feh -dF ai202209_s04_08.png
```

Try following practice.

Practice 04-09

Make your own Python script to create a plot of two different curves.

Here is an example of plotting five lines.

Python Code 10: ai202209_s04_09.py

```
#!/usr/pkg/bin/python3.9
#
#
# Time-stamp: <2022/10/02 07:39:05 (CST) daisuke>
#
# importing numpy module
import numpy
# importing matplotlib module
import matplotlib.backends.backend_agg
import matplotlib.figure
# data to be plotted
data_x = numpy.linspace (-10.0, +10.0, 10**3)
data_11 = 2.0 * data_x - 12.0
data_12 = 2.0 * data_x - 6.0
data_13 = 2.0 * data_x - 0.0
data_14 = 2.0 * data_x + 6.0
```


Figure 23: Plot created by the script ai202209_s04_08.py.

```
data_{15} = 2.0 * data_x + 12.0
# output file name
file_output = 'ai202209_s04_09.png'
# making a fig object
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111)
# making a plot using object-oriented interface
ax.plot (data_x, data_11, label='f(x) = 2x - 12')
ax.plot (data_x, data_12, label='f(x) = 2x - 6')
ax.plot (data_x, data_13, label='f(x) = 2x')
ax.plot (data_x, data_14, label='f(x) = 2x + 6')
ax.plot (data_x, data_15, label='f(x) = 2x + 12')
# setting ranges of x-axis and y-axis
ax.set_xlim (-10.0, +10.0)
ax.set_ylim (-30.0, +30.0)
# setting labels for x-axis and y-axis
ax.set_xlabel ('$x$')
ax.set_ylabel ('$y$')
```

```
# setting ticks
ax.set_xticks (numpy.linspace (-10.0, +10.0, 11))
ax.set_yticks (numpy.linspace (-30.0, +30.0, 11))
# showing grid
ax.grid ()
# adding legend to the plot
ax.legend ()
# saving a plot as a file
fig.savefig (file_output)
```

```
% ./ai202209_s04_09.py
% ls -l *.png
-rw-r--r-- 1 daisuke taiwan
                             25675 Oct 1 13:09 ai202209_s04_00.png
-rw-r--r-- 1 daisuke taiwan
                             25675 Oct 1 13:09 ai202209_s04_01.png
-rw-r--r-- 1 daisuke
                     taiwan 25675 Oct 1 13:09 ai202209_s04_02.png
-rw-r--r- 1 daisuke taiwan 25675 Oct 1 13:10 ai202209_s04_03.png
-rw-r--r- 1 daisuke taiwan 21634 Oct 1 21:55 ai202209_s04_04.png
-rw-r--r- 1 daisuke taiwan 25102 Oct 1 22:02 ai202209_s04_05.png
-rw-r--r-- 1 daisuke taiwan 30436 Oct 1 22:15 ai202209_s04_06.png
-rw-r--r- 1 daisuke taiwan 23172 Oct 1 22:29 ai202209_s04_07.png
-rw-r--r--
          1 daisuke taiwan 39369 Oct 1 22:49 ai202209_s04_08.png
           1 daisuke taiwan 53290 Oct 1 22:55 ai202209_s04_09.png
rw-r--r--
```

Display the PNG image file. (24)

```
% feh -dF ai202209_s04_09.png
```

Try following practice.

Practice 04-10

Make your own Python script to create a plot of three different curves.

9 Changing properties of lines/curves

Try to change properties of lines/curves.

9.1 Changing colours of line/curves

Change the colours of lines/curves. Here is an example.

Python Code 11: ai202209_s04_10.py

```
#!/usr/pkg/bin/python3.9
#
# Time-stamp: <2022/10/02 07:39:27 (CST) daisuke>
#
# importing numpy module
import numpy
```


Figure 24: Plot created by the script ai202209_s04_09.py.

```
# importing matplotlib module
import matplotlib.backends.backend_agg
import matplotlib.figure
# data to be plotted
data_x = numpy.linspace (-10.0, +10.0, 10**3)
data_{10} = 2.0 * data_{x} - 30.0
data_{11} = 2.0 * data_{x} - 20.0
data_{12} = 2.0 * data_x - 10.0
data_{13} = 2.0 * data_{x} - 0.0
data_{14} = 2.0 * data_{x} + 10.0
data_{15} = 2.0 * data_x + 20.0
data_{16} = 2.0 * data_{x} + 30.0
# output file name
file_output = 'ai202209_s04_10.png'
# making a fig object
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111)
# making a plot using object-oriented interface
```

```
ax.plot (data_x, data_10, color='red', label='$f(x) = 2x - 30$')
ax.plot (data_x, data_11, color='green',
                                           label='$f(x) = 2x - 20$')
ax.plot (data_x, data_12, color='blue',
                                          label='$f(x) = 2x - 10$')
ax.plot (data_x, data_13, color='cyan',
                                           label = '$f(x) = 2x$')
ax.plot (data_x, data_14, color='magenta', label='$f(x) = 2x + 10$')
ax.plot (data_x, data_15, color='yellow', label='f(x) = 2x + 20')
ax.plot (data_x, data_16, color='grey',
                                           label='$f(x) = 2x + 30$')
# setting ranges of x-axis and y-axis
ax.set_xlim (-10.0, +10.0)
ax.set_ylim (-60.0, +100.0)
# setting labels for x-axis and y-axis
ax.set_xlabel ('$x$')
ax.set_ylabel ('$y$')
# setting ticks
ax.set_xticks (numpy.linspace (-10.0, +10.0, 11))
ax.set_yticks (numpy.linspace (-60.0, +100.0, 17))
# showing grid
ax.grid ()
# adding legend to the plot
ax.legend ()
# saving a plot as a file
fig.savefig (file_output)
```

```
% ./ai202209_s04_10.py
% ls *.png
ai202209_s04_00.png ai202209_s04_04.png ai202209_s04_08.png
ai202209_s04_01.png ai202209_s04_05.png ai202209_s04_09.png
ai202209_s04_02.png ai202209_s04_06.png ai202209_s04_10.png
ai202209_s04_03.png ai202209_s04_07.png
```

Display the PNG image file. (25)

% feh -dF ai202209_s04_10.png

Names of colours you can use for Matplotlib can be found at following web page. (Fig. 26)

• List of named colors: https://matplotlib.org/stable/gallery/color/named_colors.html

Try following practice.

Practice 04-11

Make your own Python script to create a plot of a line (or a curve) using your favourite colour.

9.2 Changing line styles

Change the line style of lines/curves. Here is an example.

Figure 25: Plot created by the script ai202209_s04_10.py.

		L	ist of named colors — Ma	tplotlib 3.6.0 documentation	n — Mozilla Firefox		×
S List of named colors — ▷ × +							
$\leftarrow \rightarrow \mathbb{C}$ $\bigcirc \mathbb{A}$ https://matplotlib	.org/stabl	e/gallery/color/named_colors.html					⑦ 150% ☆ ② ≡
matpletlib		Plot types Example	s Tutorials Re	ference User guid	le Develop Relea:	se notes Q D st	table - III D O Y
Section Navigation		dimgray dimgrey	bisqu darko burly antig	e vrange vood	forestgreen limegreen darkgreen green	slategrey lightsteelblue cornflowerblue royalblue	E On this page Helper Function for Plotting
Lines, bars and markers	\sim	grey	tan		lime	ghostwhite	Deep colore
Images, contours and fields	~	darkgray darkgrey	navaj blanc	owhite hedalmond	seagreen mediumseagreen	lavender midnightblue	Tableau Palette
Subplots, axes and figures	~	silver lightgray	papa mocc	yawhip asin	springgreen mintcream	darkblue	CSS Colors
Statistics	č	gainsboro gainsboro	orang whea	t	mediumspringgreen mediumaquamarine	blue	XKCD Colors
Text, labels and annotations	Ĵ.	white	floral	white	turquoise	darkslateblue	Chow Source
pyplot	~	rosybrown lightcoral	golde corns	nrod ilk	mediumturquoise	mediumpurple rebeccapurple	Show Source
Color	~	indianred brown	gold lemo	nchiffon	lightcyan paleturguoise	blueviolet indigo	
Color Demo		firebrick	khaki	oldeprod	darkslategray	darkorchid darkviolet	
Color by y-value	- 1	darkred	darkk	shaki	teal	mediumorchid	
Colors in the default property cycle	- 1	mistyrose	beige		aqua	plum	
Colorbar		tomato	lightg	oldenrodyellow	darkturquoise	purple	
Colormap reference	- 1	coral	yellow	N	powderblue	fuchsia	
Creating a colormap from a list of colors		lightsalmon	olived yellow	drab wgreen	lightblue deepskyblue	orchid	
List of named colors	- 1	sienna seashell	darko greer	livegreen nyellow	skyblue lightskyblue	mediumvioletred deeppink	
Shapes and collections	~	chocolate saddlebrown	chart lawng	reuse green	aliceblue	hotpink lavenderblush	
Style sheets	~	sandybrown peachpuff	hone	ydew eagreen	dodgerblue lightslategray	palevioletred crimson	
axes grid1	~	peru	paleg	reen	lightslategrey	pink	

Figure 26: The list of available colour names for Matplotlib.

Python Code 12: ai202209_s04_11.py

```
#!/usr/pkg/bin/python3.9
#
# Time-stamp: <2022/10/02 09:40:13 (CST) daisuke>
# importing numpy module
import numpy
# importing matplotlib module
import matplotlib.backends.backend_agg
import matplotlib.figure
# data to be plotted
data_x = numpy.linspace (-10.0, +10.0, 10**3)
data_c0 = numpy.sin (data_x)
data_c1 = numpy.sin (data_x - numpy.pi / 4.0)
data_c2 = numpy.sin (data_x - numpy.pi / 2.0)
data_c3 = numpy.sin (data_x - numpy.pi * 3.0 / 4.0)
# output file name
file_output = 'ai202209_s04_11.png'
# making a fig object
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111)
# making a plot using object-oriented interface
ax.plot (data_x, data_c0, color='k', linestyle='-', label='solid line')
ax.plot (data_x, data_c1, color='k', linestyle='--', label='dashed line')
ax.plot (data_x, data_c2, color='k', linestyle='-.', label='dash-dotted line')
ax.plot (data_x, data_c3, color='k', linestyle=':', label='dotted line')
# setting ranges of x-axis and y-axis
ax.set_xlim (-10.0, +10.0)
ax.set_ylim (-1.2, +1.9)
# setting labels for x-axis and y-axis
ax.set_xlabel ('$x$')
ax.set_ylabel ('$y$')
# setting ticks
ax.set_xticks (numpy.linspace (-10.0, +10.0, 11))
ax.set_yticks (numpy.linspace (-1.0, +1.0, 5))
# showing grid
ax.grid ()
# adding legend to the plot
ax.legend ()
# saving a plot as a file
fig.savefig (file_output)
```

% ./ai202209_s04_11.py		
% ls *.png		
ai202209_s04_00.png	ai202209_s04_04.png	ai202209_s04_08.png
ai202209_s04_01.png	ai202209_s04_05.png	ai202209_s04_09.png
ai202209_s04_02.png	ai202209_s04_06.png	ai202209_s04_10.png
ai202209_s04_03.png	ai202209_s04_07.png	ai202209_s04_11.png

Display the PNG image file. (27)

% feh -dF ai202209_s04_11.png

Figure 27: Plot created by the script ai202209_s04_11.py.

Try following practice.

Practice 04-12

Make your own Python script to create a plot of a line (or a curve) using dash-dotted line style.

9.3 Changing line width

Change the line width of lines/curves. Here is an example.

Python Code 13: ai202209_s04_12.py

```
#!/usr/pkg/bin/python3.9
#
# Time-stamp: <2022/10/02 09:50:43 (CST) daisuke>
# importing numpy module
import numpy
# importing matplotlib module
import matplotlib.backends.backend_agg
import matplotlib.figure
# data to be plotted
data_x = numpy.linspace (-10.0, +10.0, 10**3)
data_c0 = numpy.cos (data_x)
data_c1 = numpy.cos (data_x - numpy.pi / 4.0)
data_c2 = numpy.cos (data_x - numpy.pi / 2.0)
data_c3 = numpy.cos (data_x - numpy.pi * 3.0 / 4.0)
# output file name
file_output = 'ai202209_s04_12.png'
# making a fig object
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111)
# making a plot using object-oriented interface
ax.plot (data_x, data_c0, c='k', ls='-', linewidth=1, label='linewidth=1')
ax.plot (data_x, data_c1, c='k', ls='-', linewidth=2, label='linewidth=2')
ax.plot (data_x, data_c2, c='k', ls='-', linewidth=3, label='linewidth=3')
ax.plot (data_x, data_c3, c='k', ls='-', linewidth=4, label='linewidth=4')
# setting ranges of x-axis and y-axis
ax.set_xlim (-10.0, +10.0)
ax.set_ylim (-1.2, +1.9)
# setting labels for x-axis and y-axis
ax.set_xlabel ('$x$')
ax.set_ylabel ('$y$')
# setting ticks
ax.set_xticks (numpy.linspace (-10.0, +10.0, 11))
ax.set_yticks (numpy.linspace (-1.0, +1.0, 5))
# showing grid
ax.grid ()
# adding legend to the plot
ax.legend ()
# saving a plot as a file
fig.savefig (file_output)
```

% ./ai202209_s04_12.py		
% ls *.png		
ai202209_s04_00.png	ai202209_s04_05.png	ai202209_s04_10.png
ai202209_s04_01.png	ai202209_s04_06.png	ai202209_s04_11.png
ai202209_s04_02.png	ai202209_s04_07.png	ai202209_s04_12.png
ai202209_s04_03.png	ai202209_s04_08.png	
ai202209_s04_04.png	ai202209_s04_09.png	

Display the PNG image file. (28)

% feh -dF ai202209_s04_12.png

Figure 28: Plot created by the script ai202209_s04_12.py.

Try following practice.

Practice 04-13

Make your own Python script to create a plot of three lines (or three curves) using different line width.

9.4 Combinations of colour, line style, and line width

Try following example.

Python Code 14: ai202209_s04_13.py

```
#!/usr/pkg/bin/python3.9
#
# Time-stamp: <2022/10/02 09:58:37 (CST) daisuke>
# importing numpy module
import numpy
# importing matplotlib module
import matplotlib.backends.backend_agg
import matplotlib.figure
# data to be plotted
data_x = numpy.linspace (-10.0, +10.0, 10**3)
data_c0 = numpy.cos (data_x)
data_c1 = numpy.cos (data_x - numpy.pi / 4.0)
data_c2 = numpy.cos (data_x - numpy.pi / 2.0)
data_c3 = numpy.cos (data_x - numpy.pi * 3.0 / 4.0)
# output file name
file_output = 'ai202209_s04_13.png'
# making a fig object
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111)
# making a plot using object-oriented interface
ax.plot (data_x, data_c0, c='k', ls='-', lw=1, label='c=k, ls=-, lw=1')
ax.plot (data_x, data_c1, c='r', ls='--', lw=2, label='c=r, ls=--, lw=2')
ax.plot (data_x, data_c2, c='g', ls='-.', lw=3, label='c=g, ls=-., lw=3')
ax.plot (data_x, data_c3, c='b', ls=':', lw=4, label='c=b, ls=:, lw=4')
# setting ranges of x-axis and y-axis
ax.set_xlim (-10.0, +10.0)
ax.set_ylim (-1.2, +1.9)
# setting labels for x-axis and y-axis
ax.set_xlabel ('$x$')
ax.set_ylabel ('$y$')
# setting ticks
ax.set_xticks (numpy.linspace (-10.0, +10.0, 11))
ax.set_yticks (numpy.linspace (-1.0, +1.0, 5))
# showing grid
ax.grid ()
# adding legend to the plot
ax.legend ()
# saving a plot as a file
fig.savefig (file_output)
```

% ./ai202209_s04_13.py		
% ls *.png		
ai202209_s04_00.png	ai202209_s04_05.png	ai202209_s04_10.png
ai202209_s04_01.png	ai202209_s04_06.png	ai202209_s04_11.png
ai202209_s04_02.png	ai202209_s04_07.png	ai202209_s04_12.png
ai202209_s04_03.png	ai202209_s04_08.png	ai202209_s04_13.png
ai202209_s04_04.png	ai202209_s04_09.png	

Display the PNG image file. (29)

% feh -dF ai202209_s04_13.png

Figure 29: Plot created by the script ai202209_s04_13.py.

Try following practice.

Practice 04-14

Make your own Python script to create a plot of three lines (or three curves) using different colour, line style, and line width.

10 Plotting data

10.1 Plotting points

Plot points. Here is an example.

Python Code 15: ai202209_s04_14.py

```
#!/usr/pkg/bin/python3.9
#
# Time-stamp: <2022/10/02 23:36:37 (CST) daisuke>
# importing numpy module
import numpy
# importing matplotlib module
import matplotlib.backends.backend_agg
import matplotlib.figure
# data to be plotted
      = numpy.random.default_rng ()
rng
data_x = rng.uniform (0.0, 100.0, 50)
data_y = rng.uniform (0.0, 100.0, 50)
# output file name
file_output = 'ai202209_s04_14.png'
# making a fig object
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111)
# making a plot using object-oriented interface
ax.plot (data_x, data_y, c='b', ls='None', marker='.', label='marker=.')
# setting ranges of x-axis and y-axis
ax.set_xlim (-1.0, +101.0)
ax.set_ylim (-1.0, +101.0)
# setting labels for x-axis and y-axis
ax.set_xlabel ('$x$')
ax.set_ylabel ('$y$')
# setting ticks
ax.set_xticks (numpy.linspace (0.0, +100.0, 11))
ax.set_yticks (numpy.linspace (0.0, +100.0, 11))
# setting aspect ratio
ax.set_aspect ('equal')
# showing grid
ax.grid ()
# adding legend to the plot
ax.legend ()
# saving a plot as a file
fig.savefig (file_output)
```

Execute above script.
% ./ai202209_s04_14.py		
% ls *.png		
ai202209_s04_00.png	ai202209_s04_05.png	ai202209_s04_10.png
ai202209_s04_01.png	ai202209_s04_06.png	ai202209_s04_11.png
ai202209_s04_02.png	ai202209_s04_07.png	ai202209_s04_12.png
ai202209_s04_03.png	ai202209_s04_08.png	ai202209_s04_13.png
ai202209_s04_04.png	ai202209_s04_09.png	ai202209_s04_14.png

Display the PNG image file. (30)

% feh -dF ai202209_s04_14.png

Figure 30: Plot created by the script ai202209_s04_14.py.

Try following practice.

Practice 04-15

Make your own Python script to create a plot of a set of data points.

10.2 Plotting points using different markers

Plot points using specified markers. Here is an example.

Python Code 16: ai202209_s04_15.py

```
#!/usr/pkg/bin/python3.9
```

#

```
# Time-stamp: <2022/10/02 10:53:04 (CST) daisuke>
#
# importing numpy module
import numpy
# importing matplotlib module
import matplotlib.backends.backend_agg
import matplotlib.figure
# data to be plotted
data_x = numpy.concatenate ([
   numpy.linspace (1.0, 4.0, 4), \
   numpy.linspace (1.0, 4.0, 4), \
    numpy.linspace (1.0, 4.0, 4), \
   numpy.linspace (1.0, 4.0, 4) ])
data_y = numpy.concatenate ([
   numpy.repeat (1.0, 4), \
   numpy.repeat (2.0, 4), \
   numpy.repeat (3.0, 4), \
    numpy.repeat (4.0, 4) ])
# list of markers
list_marker = [
    '.', '0', 'V', '^', \
    '<', '>', 's', 'p', \
   'P', '*', 'h', '+', \
    'x', 'X', 'D', 'd' \
]
# list of labels
list_label = [
    'marker="."', 'marker="o"', 'marker="v"', 'marker="^"', \
    'marker="<"', 'marker=">"', 'marker="s"', 'marker="p"', \
                 'marker="*"', 'marker="h"', 'marker="+"'
    'marker="P"',

    'marker="x"', 'marker="X"', 'marker="D"', 'marker="d"' \
]
# output file name
file_output = 'ai202209_s04_15.png'
# making a fig object
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111)
# making a plot using object-oriented interface
for i in range (len (data_x)):
    ax.plot (data_x[i], data_y[i], ls='None', marker=list_marker[i], \
             label=list_label[i])
# setting ranges of x-axis and y-axis
ax.set_xlim (0.0, +8.0)
ax.set_ylim (0.0, +6.0)
```

```
# setting labels for x-axis and y-axis
ax.set_xlabel ('$x$')
ax.set_ylabel ('$y$')
# setting ticks
ax.set_xticks (numpy.linspace (0.0, +8.0, 9))
ax.set_yticks (numpy.linspace (0.0, +6.0, 7))
# setting aspect ratio
ax.set_aspect ('equal')
# showing grid
ax.grid ()
# adding legend to the plot
ax.legend ()
# saving a plot as a file
fig.savefig (file_output)
```

```
% ./ai202209_s04_15.py
% ls *.png
ai202209_s04_00.png
                           ai202209_s04_06.png
                                                      ai202209_s04_12.png
                           ai202209_s04_07.png
ai202209_s04_01.png
                                                      ai202209_s04_13.png
ai202209_s04_02.png
                           ai202209_s04_08.png
                                                      ai202209_s04_14.png
ai202209_s04_03.png
                           ai202209_s04_09.png
                                                      ai202209_s04_15.png
ai202209_s04_04.png
                           ai202209_s04_10.png
ai202209_s04_05.png
                           ai202209_s04_11.png
```

Display the PNG image file. (31)

```
% feh -dF ai202209_s04_15.png
```

For the choices of markers, visit following page. (Fig. 32)

```
• https://matplotlib.org/stable/api/markers_api.html
```

Try following practice.

Practice 04-16

Make your own Python script to create a plot of a set of data points using your favourite marker.

10.3 Plotting points of different marker sizes

Plot points using specified marker sizes. Here is an example.

Python Code 17: ai202209_s04_16.py

```
#!/usr/pkg/bin/python3.9
#
# Time-stamp: <2022/10/02 11:05:50 (CST) daisuke>
#
# importing numpy module
```

KINOSHITA Daisuke

Figure 31: Plot created by the script ai202209_s04_15.py.

		matplotlib.markers — Matp	plotlib 3.6.0 documentation — Mozilla Firefox	
plotlib.org/stable/a	api/markers_api.html			Ē 150% ☆ 🛛 🗢
	Plot types Example	es Tutorials Ref	erence User guide Develop Release notes Q 🔘	stable - III D 🖓 🎔
_		2 100		
	matplo	tlib.ma	arkers	🗮 On this page
				Classes
	Functions to hand	dle markers; used l	by the marker functionality of plot , scatter , and	
~	errorbar.			Show Source
^	All possible mark	ers are defined he	re:	
	marker	symbol	description	
- L	ш_п		point	
~	н _у н		pixel	
	"0"		circle	
	U			
~	"V"	•	triangle_down	
~	"^"	A	triangle_up	
	"<"	•	triangle_left	
	">"		triangle_right	
	I.e.II		Ani alayyun	-
	solotib.org/stable/i	plotlib.org/stable/api/markers_api.html Plot types Example Functions to han errorbar. All possible marker "." " " " " " " " " " " " " " " " " "	Plot types Examples Tutorials Ref Plot types Examples Tutorials Ref Functions to handle markers; used errorbar. All possible markers are defined he marker symbol """ """ """ """ """ """ """ "	Plot types Examples Tutorials Reference User guide Develop Release notes Q O Matplotlib.markers, used by the marker functionality of plot, scatter, and errorbar. All possible markers are defined here: Marker symbol description N, Pixel N


```
import numpy
# importing matplotlib module
import matplotlib.backends.backend_agg
import matplotlib.figure
# data to be plotted
data_x = numpy.concatenate ([
   numpy.linspace (1.0, 4.0, 4), \
    numpy.linspace (1.0, 4.0, 4), \
    numpy.linspace (1.0, 4.0, 4), \
    numpy.linspace (1.0, 4.0, 4) ])
data_y = numpy.concatenate ([
   numpy.repeat (1.0, 4), \
    numpy.repeat (2.0, 4), \setminus
   numpy.repeat (3.0, 4), \
   numpy.repeat (4.0, 4) ])
# output file name
file_output = 'ai202209_s04_16.png'
# making a fig object
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111)
# making a plot using object-oriented interface
for i in range (len (data_x)):
    ax.plot (data_x[i], data_y[i], ls='None', marker='o', \
             markersize=i+1, label=f'markersize={i+1}')
# setting ranges of x-axis and y-axis
ax.set_xlim (0.0, +8.0)
ax.set_ylim (0.0, +6.0)
# setting labels for x-axis and y-axis
ax.set_xlabel ('$x$')
ax.set_ylabel ('$y$')
# setting ticks
ax.set_xticks (numpy.linspace (0.0, +8.0, 9))
ax.set_yticks (numpy.linspace (0.0, +6.0, 7))
# setting aspect ratio
ax.set_aspect ('equal')
# showing grid
ax.grid ()
# adding legend to the plot
ax.legend ()
# saving a plot as a file
fig.savefig (file_output)
```

% ./ai202209_s04_16.py		
% ls *.png		
ai202209_s04_00.png	ai202209_s04_06.png	ai202209_s04_12.png
ai202209_s04_01.png	ai202209_s04_07.png	ai202209_s04_13.png
ai202209_s04_02.png	ai202209_s04_08.png	ai202209_s04_14.png
ai202209_s04_03.png	ai202209_s04_09.png	ai202209_s04_15.png
ai202209_s04_04.png	ai202209_s04_10.png	ai202209_s04_16.png
ai202209_s04_05.png	ai202209_s04_11.png	

Display the PNG image file. (33)

Figure 33: Plot created by the script ai202209_s04_16.py.

Try following practice.

Practice 04-17

Make your own Python script to create a plot of a set of data points using marker size of 20.

11 Attaching error bars to data points

We always need to show uncertainties for our scientific measurements.

11.1 Attaching error bars along vertical axis

Attach error bars along vertical axis. Here is an example.

```
Python Code 18: ai202209_s04_17.py
```

```
#!/usr/pkg/bin/python3.9
# Time-stamp: <2022/10/02 15:39:49 (CST) daisuke>
# importing numpy module
import numpy
# importing matplotlib module
import matplotlib.backends.backend_agg
import matplotlib.figure
# data to be plotted
data_x = numpy.linspace (1.0, 10.0, 10)
data_y = 2.0 * data_x + 3.0
# generating random numbers for errors of y-value
rng = numpy.random.default_rng ()
data_yerr = rng.uniform (1.0, 3.0, 10)
# output file name
file_output = 'ai202209_s04_17.png'
# making a fig object
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111)
# making a plot using object-oriented interface
ax.errorbar (data_x, data_y, yerr=data_y_err,
             linestyle='None', marker='o', markersize=8.0, color='green', \
             elinewidth=2.0, ecolor='black', capsize=5.0, \
             label='Sample data')
# setting ranges of x-axis and y-axis
ax.set_xlim (0.0, +11.0)
ax.set_ylim (0.0, +30.0)
# setting labels for x-axis and y-axis
ax.set_xlabel ('$x$')
ax.set_ylabel ('$y$')
# setting ticks
ax.set_xticks (numpy.linspace (0.0, +10.0, 11))
ax.set_yticks (numpy.linspace (0.0, +30.0, 7))
# showing grid
ax.grid ()
# adding legend to the plot
```

```
ax.legend ()
```

```
# saving a plot as a file
fig.savefig (file_output)
```

% ./ai202209_s04_17.py		
% ls *.png		
ai202209_s04_00.png	ai202209_s04_06.png	ai202209_s04_12.png
ai202209_s04_01.png	ai202209_s04_07.png	ai202209_s04_13.png
ai202209_s04_02.png	ai202209_s04_08.png	ai202209_s04_14.png
ai202209_s04_03.png	ai202209_s04_09.png	ai202209_s04_15.png
ai202209_s04_04.png	ai202209_s04_10.png	ai202209_s04_16.png
ai202209_s04_05.png	ai202209_s04_11.png	ai202209_s04_17.png

Display the PNG image file. (34)

% feh -dF ai202209_s04_17.png

Figure 34: Plot created by the script ai202209_s04_17.py.

Try following practice.

Practice 04-18

Make your own Python script to create a plot of a set of data points with error bars along y-axis.

11.2 Attaching error bars along vertical axis and horizontal axis

Attach error bars along vertical axis and horizontal axis. Here is an example.

```
Python Code 19: ai202209_s04_18.py
```

```
#!/usr/pkg/bin/python3.9
# Time-stamp: <2022/10/02 15:41:25 (CST) daisuke>
# importing numpy module
import numpy
# importing matplotlib module
import matplotlib.backends.backend_agg
import matplotlib.figure
# data to be plotted
data_x = numpy.linspace (1.0, 10.0, 10)
data_y = 2.0 * data_x + 3.0
# generating random numbers for errors of y-value
rng = numpy.random.default_rng ()
data_x_{err} = rng.uniform (0.3, 0.7, 10)
data_y = rng.uniform (1.0, 3.0, 10)
# output file name
file_output = 'ai202209_s04_18.png'
# making a fig object
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111)
# making a plot using object-oriented interface
ax.errorbar (data_x, data_y, xerr=data_x_err, yerr=data_y_err,
             linestyle='None', marker='o', markersize=8.0, color='green', \
             elinewidth=2.0, ecolor='black', capsize=5.0, \
             label='Sample data')
# setting ranges of x-axis and y-axis
ax.set_xlim (0.0, +11.0)
ax.set_ylim (0.0, +30.0)
# setting labels for x-axis and y-axis
ax.set_xlabel ('$x$')
ax.set_ylabel ('$y$')
# setting ticks
ax.set_xticks (numpy.linspace (0.0, +10.0, 11))
ax.set_yticks (numpy.linspace (0.0, +30.0, 7))
# showing grid
ax.grid ()
```

```
# adding legend to the plot
ax.legend ()
# saving a plot as a file
fig.savefig (file_output)
```

% ./ai202209_s04_18.py		
% ls *.png		
ai202209_s04_00.png	ai202209_s04_07.png	ai202209_s04_14.png
ai202209_s04_01.png	ai202209_s04_08.png	ai202209_s04_15.png
ai202209_s04_02.png	ai202209_s04_09.png	ai202209_s04_16.png
ai202209_s04_03.png	ai202209_s04_10.png	ai202209_s04_17.png
ai202209_s04_04.png	ai202209_s04_11.png	ai202209_s04_18.png
ai202209_s04_05.png	ai202209_s04_12.png	
ai202209_s04_06.png	ai202209_s04_13.png	

Display the PNG image file. (35)

% feh -dF ai202209_s04_18.png

Figure 35: Plot created by the script ai202209_s04_18.py.

Try following practice.

Practice 04-19

Make your own Python script to create a plot of a set of data points with error bars both along x-axis and y-axis.

12 Using log scale for plots

Learn about using log scale for axes of plots.

12.1 Making a semi-log plot

First, make a plot of an exponential function using linear scale.

```
Python Code 20: ai202209_s04_19.py
```

```
#!/usr/pkg/bin/python3.9
# Time-stamp: <2022/10/02 15:59:51 (CST) daisuke>
# importing numpy module
import numpy
# importing matplotlib module
import matplotlib.backends.backend_agg
import matplotlib.figure
# data to be plotted
data_x = numpy.linspace (-5.0, 5.0, 101)
data_y = 10.0 * * data_x
# output file name
file_output = 'ai202209_s04_19.png'
# making a fig object
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111)
# making a plot using object-oriented interface
ax.plot (data_x, data_y, linestyle='-', linewidth=3.0, color='orange', \
         label='Sample data')
# setting labels for x-axis and y-axis
ax.set_xlabel ('$x$')
ax.set_ylabel ('$y$')
# showing grid
ax.grid ()
# adding legend to the plot
ax.legend ()
# saving a plot as a file
fig.savefig (file_output)
```

Execute above script.

% ./ai202209_s04_19.py % ls *.png

Display the PNG image file. (36)

% feh -dF ai202209_s04_19.png

Try following practice.

```
Practice 04-20
```

Make your own Python script to create a plot of an exponential function using linear scale.

Then, make a plot of an exponential function using logarithmic scale.

Python Code 21: ai202209_s04_20.py

```
#!/usr/pkg/bin/python3.9
#
# Time-stamp: <2022/10/02 16:00:10 (CST) daisuke>
#
```

```
# importing numpy module
import numpy
# importing matplotlib module
import matplotlib.backends.backend_agg
import matplotlib.figure
# data to be plotted
data_x = numpy.linspace (-5.0, 5.0, 101)
data_y = 10.0 * * data_x
# output file name
file_output = 'ai202209_s04_20.png'
# making a fig object
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111)
# making a plot using object-oriented interface
ax.plot (data_x, data_y, linestyle='-', linewidth=3.0, color='orange', \
         label='Sample data')
# setting log-scale
ax.set_yscale ('log')
# setting labels for x-axis and y-axis
ax.set_xlabel ('$x$')
ax.set_ylabel ('$y$')
# showing grid
ax.grid ()
# adding legend to the plot
ax.legend ()
# saving a plot as a file
fig.savefig (file_output)
```

```
% ./ai202209_s04_20.py
% ls *.png
ai202209_s04_00.png
                           ai202209_s04_07.png
                                                      ai202209_s04_14.png
ai202209_s04_01.png
                                                      ai202209_s04_15.png
                           ai202209_s04_08.png
ai202209_s04_02.png
                                                      ai202209_s04_16.png
                           ai202209_s04_09.png
ai202209_s04_03.png
                           ai202209_s04_10.png
                                                      ai202209_s04_17.png
ai202209_s04_04.png
                           ai202209_s04_11.png
                                                      ai202209_s04_18.png
                           ai202209_s04_12.png
ai202209_s04_05.png
                                                      ai202209_s04_19.png
                           ai202209_s04_13.png
                                                      ai202209_s04_20.png
ai202209_s04_06.png
```

Display the PNG image file. (37)

% feh -dF ai202209_s04_20.png

Figure 37: Plot created by the script ai202209_s04_20.py.

Try following practice.

Practice 04-21

Make your own Python script to create a plot of an exponential function using logarithmic scale.

12.2 Making a log-log plot

Make a log-log plot. Here is an example.

```
Python Code 22: ai202209_s04_21.py
```

```
#!/usr/pkg/bin/python3.9
#
 Time-stamp: <2022/10/02 16:20:35 (CST) daisuke>
#
# importing numpy module
import numpy
# importing matplotlib module
import matplotlib.backends.backend_agg
import matplotlib.figure
# semimajor axis and orbital period of planets
dic_planets = {
                      0.3871, 'P':
                                      88.0, 'marker': 's', 'colour': 'b'},
    'Mercury': {'a':
                      0.7233, 'P':
                                      224.7, 'marker': '^', 'colour': 'y'},
               {'a':
    'Venus':
    'Earth':
               {'a':
                      1.0000, 'P': 365.2, 'marker': 'o', 'colour': 'g'},
```

```
'Mars': {'a': 1.5237, 'P': 687.0, 'marker': 'v', 'colour': 'r'},
    'Jupiter': {'a': 5.2034, 'P': 4331.0, 'marker': 's', 'colour': 'm'},
    'Saturn': {'a': 9.5371, 'P': 10747.0, 'marker': '^', 'colour': 'g'},
    'Uranus': {'a': 19.1913, 'P': 30589.0, 'marker': 'o', 'colour': 'c'},
    'Neptune': {'a': 30.0690, 'P': 59800.0, 'marker': 'v', 'colour': 'b'},
}
# line to be plotted
line_x = numpy.linspace (0.1, 100.0, 10**3)
line_y = 365.256363004 * line_x**1.5
# output file name
file_output = 'ai202209_s04_21.png'
# making a fig object
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111)
# making a plot using object-oriented interface
ax.plot (line_x, line_y, linestyle='--', linewidth=3, color='coral')
for planet in dic_planets.keys ():
    ax.plot (dic_planets[planet]['a'], dic_planets[planet]['P'], \
             linestyle='None', \
             marker=dic_planets[planet]['marker'], markersize=10, \
             color=dic_planets[planet]['colour'], label=planet)
# setting log-scale
ax.set_xscale ('log')
ax.set_yscale ('log')
# setting labels for x-axis and y-axis
ax.set_xlabel ('Semimajor Axis [au]')
ax.set_ylabel ('Orbital Period [day]')
# showing grid
ax.grid ()
# adding legend to the plot
ax.legend ()
# saving a plot as a file
fig.savefig (file_output)
```

```
% ./ai202209_s04_21.py
% ls *.png
ai202209_s04_00.png
                           ai202209_s04_08.png
                                                      ai202209_s04_16.png
ai202209_s04_01.png
                           ai202209_s04_09.png
                                                      ai202209_s04_17.png
ai202209_s04_02.png
                           ai202209_s04_10.png
                                                      ai202209_s04_18.png
ai202209_s04_03.png
                           ai202209_s04_11.png
                                                      ai202209_s04_19.png
ai202209_s04_04.png
                           ai202209_s04_12.png
                                                      ai202209_s04_20.png
ai202209_s04_05.png
                                                      ai202209_s04_21.png
                           ai202209_s04_13.png
ai202209_s04_06.png
                           ai202209_s04_14.png
```

ai202209_s04_07.png

```
ai202209_s04_15.png
```

Display the PNG image file. $\left(38\right)$

% feh -dF ai202209_s04_21.png

Figure 38: Plot created by the script ai202209_s04_21.py.

Try following practice.

```
Practice 04-22
```

Add dwarf planets (1) Ceres and (136199) Eris to above example and make a log-log plot.

13 Dealing with date/time

In astronomy, we often need to deal with date/time.

13.1 Downloading data file

Download data file.

Python Code 23: ai202209_s04_22.py

```
#!/usr/pkg/bin/python3.9
#
# Time-stamp: <2022/10/02 16:35:22 (CST) daisuke>
#
```

```
# importing urllib module
import urllib.request
# importing ssl module
import ssl
# allow insecure downloading
ssl._create_default_https_context = ssl._create_unverified_context
# URL of data file
url_data = 'https://s3b.astro.ncu.edu.tw/ai_202209/data/alf_ori.data'
# output file name
file_output = 'alf_ori.data'
# printing status
print (f'Now, fetching the file {url_data}...')
# opening URL
with urllib.request.urlopen (url_data) as fh_read:
    # reading data
    data_byte = fh_read.read ()
# printing status
print (f'Finished fetching the file {url_data}!')
# converting raw byte data into string
data_str = data_byte.decode ('utf-8')
# printing status
print (f'Now, writing the data into file {file_output}...')
# opening file for writing
with open (file_output, 'w') as fh_write:
    # writing data
   fh_write.write (data_str)
# printing status
print (f'Finished writing the data into file {file_output}!')
```

```
% ./ai202209_s04_22.py
% ls *.data
alf_ori.data
```

Show the first few lines of the data file.

```
% head alf_ori.data
2019-12-30.955 1.218
                      0.040 V NOT
2020-01-01.171 1.410
                      0.008
                             V
                                SAH
2020-01-07.863 1.360
                      0.030 V
                                NOT
2020-01-08.711 1.510
                      0.000 V NAO
2020-01-12.279 1.463
                      0.020 V PTOB
              1.518
2020-01-13.904
                      0.003
                             V
                                RZD
                      0.003
2020-01-13.904
              1.579
                             V
                                RZD
2020-01-14.250
              1.487
                      0.013
                             V
                                PTOB
```

2020-01-15.138 1.515 0.008 V SAH 2020-01-16.928 1.536 0.020 V NOT

13.2 Making a lightcurve of Betelgeuse

Read the data file and construct a lightcurve of Betelgeuse. Here is an example.

```
Python Code 24: ai202209_s04_23.py
```

```
#!/usr/pkg/bin/python3.9
# importing numpy module
import numpy
# importing matplotlib module
import matplotlib.figure
import matplotlib.backends.backend_agg
import matplotlib.dates
# importing datetime
import datetime
# input data file
file_input = 'alf_ori.data'
# output image file
file_output = 'ai202209_s04_23.png'
# making empty list and Numpy arrays
data_date = numpy.array ([], dtype='datetime64[ms]')
data_mag = numpy.array ([], dtype='float64')
data_error = numpy.array ([], dtype='float64')
# opening input file
with open (file_input, 'r') as fh_in:
    # reading data line-by-line
    for line in fh_in:
        # splitting data
        (date_str, mag_str, error_str, band, observer) = line.split ()
        # conversion from string to datetime, and then to datetime64
        date1 = datetime.datetime.strptime (date_str[:-4], '%Y-%m-%d')
              = float (date_str[-3:]) / 1000
        day
        date2 = datetime.timedelta (days=day)
        date_datetime = date1 + date2
        date_datetime64 = numpy.datetime64 (date_datetime, 'ms')
        # conversion from string to float
        mag = float (mag_str)
        error = float (error_str)
        # appending data to list and Numpy arrays
        data_date = numpy.append (data_date, date_datetime64)
        data_mag = numpy.append (data_mag, mag)
        data_error = numpy.append (data_error, error)
# making a fig object
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
```

```
# making an axes object
ax = fig.add_subplot (111)
# labels
ax.set_xlabel ('Date [YYYY-MM-DD]')
ax.set_ylabel ('V-band Magnitude [mag]')
# axis settings
ax.set_xlim (numpy.datetime64 ('2019-12-20'), numpy.datetime64 ('2020-04-01'))
ax.set_ylim (+1.9, +0.9)
# plotting data
ax.errorbar (data_date, data_mag, yerr=data_error, linestyle='None', \
             marker='o', markersize=5.0, color='red', \
             elinewidth=2.0, ecolor='black', capsize=5.0, \
             label='Betelgeuse')
# legend
ax.legend (loc='upper right')
# formatting labels
fig.autofmt_xdate()
# saving the figure to a file
fig.savefig (file_output)
```

% ./ai202209_s04_23.py		
% ls *.png		
ai202209_s04_00.png	ai202209_s04_08.png	ai202209_s04_16.png
ai202209_s04_01.png	ai202209_s04_09.png	ai202209_s04_17.png
ai202209_s04_02.png	ai202209_s04_10.png	ai202209_s04_18.png
ai202209_s04_03.png	ai202209_s04_11.png	ai202209_s04_19.png
ai202209_s04_04.png	ai202209_s04_12.png	ai202209_s04_20.png
ai202209_s04_05.png	ai202209_s04_13.png	ai202209_s04_21.png
ai202209_s04_06.png	ai202209_s04_14.png	ai202209_s04_23.png
ai202209_s04_07.png	ai202209_s04_15.png	

Display the PNG image file. (39)

% feh -dF ai202209_s04_23.png

Try following practice.

Practice 04-23

Make your own Python script to create a plot dealing with date/time.

13.3 Changing ticks

Change ticks and make a lightcurve of Betelgeuse again. Here is an example.

Python Code 25: ai202209_s04_24.py

#!/usr/pkg/bin/python3.9

```
# importing numpy module
```


Figure 39: Plot created by the script ai202209_s04_23.py.

```
import numpy
# importing matplotlib module
import matplotlib.figure
import matplotlib.backends.backend_agg
import matplotlib.dates
# importing datetime
import datetime
# input data file
file_input = 'alf_ori.data'
# output image file
file_output = 'ai202209_s04_24.png'
# making empty list and Numpy arrays
data_date = numpy.array ([], dtype='datetime64[ms]')
data_mag = numpy.array ([], dtype='float64')
data_error = numpy.array ([], dtype='float64')
# opening input file
with open (file_input, 'r') as fh_in:
    # reading data line-by-line
    for line in fh_in:
        # splitting data
        (date_str, mag_str, error_str, band, observer) = line.split ()
        # conversion from string to datetime, and then to datetime64
```

```
date1 = datetime.datetime.strptime (date_str[:-4], '%Y-%m-%d')
            = float (date_str[-3:]) / 1000
        day
        date2 = datetime.timedelta (days=day)
        date_datetime = date1 + date2
        date_datetime64 = numpy.datetime64 (date_datetime, 'ms')
        # conversion from string to float
        mag = float (mag_str)
        error = float (error_str)
        # appending data to list and Numpy arrays
        data_date = numpy.append (data_date, date_datetime64)
        data_mag = numpy.append (data_mag, mag)
        data_error = numpy.append (data_error, error)
# making a fig object
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111)
# labels
ax.set_xlabel ('Date [YYYY-MM-DD]')
ax.set_ylabel ('V-band Magnitude [mag]')
# axis settings
ax.set_xlim (numpy.datetime64 ('2019-12-20'), numpy.datetime64 ('2020-04-01'))
ax.set_ylim (+1.9, +0.9)
# plotting data
ax.errorbar (data_date, data_mag, yerr=data_error, linestyle='None', \
             marker='o', markersize=5.0, color='red', \
             elinewidth=2.0, ecolor='black', capsize=5.0, \
             label='Betelgeuse')
# ticks
           = matplotlib.dates.MonthLocator ()
months
          = matplotlib.dates.DayLocator ()
days
months_fmt = matplotlib.dates.DateFormatter ('%Y-%m-%d')
ax.xaxis.set_major_locator (months)
ax.xaxis.set_major_formatter (months_fmt)
ax.xaxis.set_minor_locator (days)
# legend
ax.legend (loc='upper right')
# formatting labels
fig.autofmt_xdate()
# saving the figure to a file
fig.savefig (file_output)
  Execute above script.
```

% ./ai202209_s04_24.py % ls *.png ai202209_s04_00.png ai202209_s04_08.png ai20 ai202209_s04_01.png ai202209_s04_09.png ai20

ai202209_s04_16.png ai202209_s04_17.png

ai202209_s04_10.png	ai202209_s04_18.png
ai202209_s04_11.png	ai202209_s04_19.png
ai202209_s04_12.png	ai202209_s04_20.png
ai202209_s04_13.png	ai202209_s04_21.png
ai202209_s04_14.png	ai202209_s04_23.png
ai202209_s04_15.png	ai202209_s04_24.png
	ai202209_s04_10.png ai202209_s04_11.png ai202209_s04_12.png ai202209_s04_13.png ai202209_s04_14.png ai202209_s04_15.png

Display the PNG image file. (40)

% feh -dF ai202209_s04_24.png

Figure 40: Plot created by the script ai202209_s04_24.py.

Try following practice.

Practice 04-24

Make your own Python script to create a plot dealing with date/time. Give settings for ticks.

14 Making histograms

14.1 Making a histogram using .bar () method

Generate a set of random numbers of Gaussian distribution, construct a histogram, and then make a plot using .bar () method. Here is an example.

Python Code 26: ai202209_s04_25.py

#!/usr/pkg/bin/python3.9

```
# importing numpy module
import numpy
# importing matplotlib module
import matplotlib.figure
import matplotlib.backends.backend_agg
import matplotlib.dates
# output image file
file_output = 'ai202209_s04_25.png'
# parameters for random number generation
mean = 1000.0
stddev = 100.0
      = 10**6
n
# parameters for histogram
bin_min
        = 500.0
bin_max = 1500.0
bin_width = 50.0
        = int ((bin_max - bin_min) / bin_width) + 1
bin n
# generating random numbers
rng = numpy.random.default_rng ()
dist = rng.normal (loc=mean, scale=stddev, size=n)
# initialisation of numpy arrays for histogram
hist_x = numpy.linspace (bin_min, bin_max, bin_n)
hist_y = numpy.zeros (bin_n, dtype='int64')
# construction of a histogram
for i in range (len (dist)):
    # if data is outside of [bin_min, bin_max], then skip
    if ( (dist[i] < bin_min) or (dist[i] > bin_max) ):
        continue
    # counting number of data in each bin
    hist_y[int ( (dist[i] - bin_min) / bin_width)] += 1
# printing histogram
for i in range (bin_n):
    bin_0 = bin_min + bin_width * i
    bin_1 = bin_min + bin_width * (i+1)
    print (f'{bin_0:6.1f}-{bin_1:6.1f} {hist_y[i]:6d}')
# making a fig object
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111)
# labels
ax.set_xlabel ('$x$')
ax.set_ylabel ('Number of data')
# axis settings
```

% ./ai202209_s04_25.py		
% ls *.png		
ai202209_s04_00.png	ai202209_s04_09.png	ai202209_s04_18.png
ai202209_s04_01.png	ai202209_s04_10.png	ai202209_s04_19.png
ai202209_s04_02.png	ai202209_s04_11.png	ai202209_s04_20.png
ai202209_s04_03.png	ai202209_s04_12.png	ai202209_s04_21.png
ai202209_s04_04.png	ai202209_s04_13.png	ai202209_s04_23.png
ai202209_s04_05.png	ai202209_s04_14.png	ai202209_s04_24.png
ai202209_s04_06.png	ai202209_s04_15.png	ai202209_s04_25.png
ai202209_s04_07.png	ai202209_s04_16.png	
ai202209_s04_08.png	ai202209_s04_17.png	

Display the PNG image file. (41)

```
% feh -dF ai202209_s04_25.png
```

Try following practice.

#!/usr/pkg/bin/python3.9

Practice 04-25

Make your own Python script to generate a set of random numbers of uniform distribution and construct a histogram using .bar () method.

14.2 Making a histogram using .hist () method

Generate a set of random numbers of Gaussian distribution, and then make a plot using .hist () method. Here is an example.

Python Code 27: ai202209_s04_26.py

```
# importing numpy module
import numpy
# importing matplotlib module
import matplotlib.figure
import matplotlib.backends.backend_agg
import matplotlib.dates
# output image file
file_output = 'ai202209_s04_26.png'
# parameters for random number generation
```


Figure 41: Plot created by the script ai202209_s04_25.py.

```
mean = 1000.0
stddev = 100.0
       = 10**7
n
# parameters for histogram
bin_min
          = 500.0
bin_max
          = 1500.0
bin_width = 20.0
          = int ((bin_max - bin_min) / bin_width) + 1
bin_n
# generating random numbers
rng = numpy.random.default_rng ()
dist = rng.normal (loc=mean, scale=stddev, size=n)
# initialisation of numpy arrays for histogram
bins = numpy.linspace (bin_min, bin_max, bin_n)
# making a fig object
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111)
# labels
ax.set_xlabel ('$x$')
```

% ./ai202209_s04_26.py		
% ls *.png		
ai202209_s04_00.png	ai202209_s04_09.png	ai202209_s04_18.png
ai202209_s04_01.png	ai202209_s04_10.png	ai202209_s04_19.png
ai202209_s04_02.png	ai202209_s04_11.png	ai202209_s04_20.png
ai202209_s04_03.png	ai202209_s04_12.png	ai202209_s04_21.png
ai202209_s04_04.png	ai202209_s04_13.png	ai202209_s04_23.png
ai202209_s04_05.png	ai202209_s04_14.png	ai202209_s04_24.png
ai202209_s04_06.png	ai202209_s04_15.png	ai202209_s04_25.png
ai202209_s04_07.png	ai202209_s04_16.png	ai202209_s04_26.png
ai202209_s04_08.png	ai202209_s04_17.png	

Display the PNG image file. (42)

% feh -dF ai202209_s04_26.png

Try following practice.

Practice 04-26

Make your own Python script to generate a set of random numbers of uniform distribution and construct a histogram using .hist () method.

15 Making a scatter plot

Download Yale Bright Star Catalogue, and make a HR diagram.

15.1 Downloading Yale Bright Star Catalogue

Make a Python script to download Yale Bright Star Catalogue.

Python Code 28: ai202209_s04_27.py

```
#!/usr/pkg/bin/python3.9
#
# Time-stamp: <2022/10/02 17:58:08 (CST) daisuke>
#
```


Figure 42: Plot created by the script ai202209_s04_26.py.

```
# importing urllib module
import urllib.request
# importing ssl module
import ssl
# allow insecure downloading
ssl._create_default_https_context = ssl._create_unverified_context
# URL of data file
url_data = 'https://cdsarc.cds.unistra.fr/ftp/V/50/catalog.gz'
# output file name
file_output = 'catalog.gz'
# printing status
print (f'Now, fetching the file {url_data}...')
# opening URL
with urllib.request.urlopen (url_data) as fh_read:
    # reading data
    data_byte = fh_read.read ()
# printing status
print (f'Finished fetching the file {url_data}!')
# printing status
print (f'Now, writing the data into file {file_output}...')
```

<pre># opening</pre>	file for	r writing	g						
with open	(file_ou	itput, '	wb')	as fl	h_writ	e:			
# writ	ing data	1							
fh_wri	te.write	e (data_l	byte)						
# printing	g status								
print (f'H	inished	writing	the	data	into	file	{file	output}!)

```
% ./ai202209_s04_27.py
% ls -l catalog.gz
-rw-r--r-- 1 daisuke taiwan 573921 Oct 2 17:58 catalog.gz
```

To learn about the format of the catalogue file, read following file. (Fig. 43)

• https://cdsarc.cds.unistra.fr/ftp/V/50/ReadMe

				Mozilla Firefox		×
🥰 cdsarc.cds.un	istra.fr/ftp/\×	+				
$\leftarrow \ \rightarrow \ G$		○ A https://d	dsarc.cds.unistra.fr	ftp/V/50/ReadMe	F 200% 🟠	=
Byte-by-	-byte De	scriptio	n of file:	catalog		
Bytes	s Format	Units	Label	Explanations		
1- 4	4 I4		HR	[1/9110]+ Harvard Revised Number		
				= Bright Star Number		
5-14	4 A10		Name	Name, generally Bayer and/or Flamsteed name		
15 - 25	5 A11		DM	Durchmusterung Identification (zone in		
				bytes 17-19)		
26-31	L I6		HD	[1/225300]? Henry Draper Catalog Number		
32- 37	7 I6		SA0	[1/258997]? SAO Catalog Number		
38-41	L I4		FK5	? FK5 star Number		1
42	2 A1		IRflag	[I] I if infrared source		
43	3 A1		r_IRflag	*[':] Coded reference for infrared source		
44	4 A1		Multiple	*[AWDIRS] Double or multiple-star code		
45-49	9 A5		ADS	Aitken's Double Star Catalog (ADS) designation		
50-51	L A2		ADScomp	ADS number components		
52-60	Ð A9		VarID	Variable star identification		
61- 62	2 I2	h	RAh1900	?Hours RA, equinox B1900, epoch 1900.0 (1)		
63- 64	4 I2	min	RAm1900	?Minutes RA, equinox B1900, epoch 1900.0 (1)		
65-68	3 F4.1	S	RAs1900	?Seconds RA, equinox B1900, epoch 1900.0 (1)		
69	9 A1		DE-1900	?Sign Dec, equinox B1900, epoch 1900.0 (1)		
70-71	l I2	deg	DEd1900	?Degrees Dec, equinox B1900, epoch 1900.0 (1)		
72-73	3 I2	arcmin	DEm1900	?Minutes Dec, equinox B1900, epoch 1900.0 (1)		
74-75	5 I2	arcsec	DEs1900	?Seconds Dec, equinox B1900, epoch 1900.0 (1)		
76-77	7 I2	h	RAh	?Hours RA, equinox J2000, epoch 2000.0 (1)		
78-79	9 I2	min	RAm	?Minutes RA, equinox J2000, epoch 2000.0 (1)		
80-83	3 F4.1	S	RAs	?Seconds RA, equinox J2000, epoch 2000.0 (1)		
84	4 A1		DE -	?Sign Dec, equinox J2000, epoch 2000.0 (1)		
85-86	5 I2	deg	DEd	?Degrees Dec, equinox J2000, epoch 2000.0 (1)		
87-88	3 I2	arcmin	DEm	?Minutes Dec, equinox J2000, epoch 2000.0 (1)		
89-90	9 I2	arcsec	DEs	?Seconds Dec, equinox J2000, epoch 2000.0 (1)		
Q1_ Q4	5 F6 2	den	GLON	2Galactic longitude (1)		 _

Figure 43: The ReadMe file of Yale Bright Star Catalogue.

15.2 Reading information from the catalogue file

Make a Python script to read information from the catalogue file.

Python Code 29: ai202209_s04_28.py

```
#!/usr/pkg/bin/python3.9
#
# Time-stamp: <2022/10/02 18:21:20 (CST) daisuke>
#
# importing gzip module
import gzip
```

KINOSHITA Daisuke

```
# importing numpy module
import numpy
# catalogue file name
file_catalogue = 'catalog.gz'
# dictionary for storing data
stars = \{\}
# opening catalogue file
with gzip.open (file_catalogue, 'rb') as fh:
    # reading catalogue line-by-line
    for line in fh:
        # Harvard Revised Number of star
        HR = line[0:4].strip()
        # name
        name = line[4:14].strip ()
        # Vmag
        mag_V = line[102:107].strip ()
        # B-V colour
        colour_BV = line[109:114].strip ()
        # spectral type
        sptype = line[127:147].strip ()
        # dynamical parallax flag
        dynamical_parallax = line[160]
        # parallax
        parallax = line[161:166]
        # skip, if any of mag_V, colour_BV, parallax is missing
        if ( (mag_V == '') or (colour_BV == '') or (parallax == '') ):
            continue
        # skip, if parallax is dynamical parallax
        if (dynamical_parallax == 'D'):
            continue
        # reformat parallax
        if (parallax[:2] == '+.'):
            parallax = '+0.' + parallax[2:]
        # conversion from string to float
        try:
                     = float (mag_V)
            mag_V
        except:
            continue
        try:
            colour_BV = float (colour_BV)
        except:
            continue
        try:
            parallax = float (parallax)
        except:
            continue
        # skip, if parallax is negative
        if (parallax < 0.0):</pre>
            continue
        # skip, if parallax is zero
        if (parallax < 10**-4):
```

continue

```
# distance in parsec
        dist_pc = 1.0 / parallax
        # absolute magnitude
        absmag_V = mag_V - 5.0 * numpy.log10 (dist_pc) + 5.0
        # constructing the dictionary
        stars[HR] = {}
        stars[HR]["mag_V"]
                                = mag_V
        stars[HR]["colour_BV"] = colour_BV
        stars[HR]["parallax"] = parallax
        stars[HR]["dist_pc"] = dist_pc
        stars[HR]["absmag_V"] = absmag_V
        stars[HR]["sptype"] = sptype
        stars[HR]["name"]
                                = name
# printing header
print ("# Vmag, (B-V), parallax, distance, absmag_V, HR, name")
# printing information of 1st mag stars
for key, value in sorted (stars.items (), key=lambda x: x[1]['mag_V']):
    if (stars[key]['mag_V'] >= 1.5):
        break
    print (f'{stars[key]["mag_V"]:+6.3f} ', \setminus
           f'{stars[key]["colour_BV"]:+6.3f} ', \
           f'{stars[key]["parallax"]:+6.3f} ', \setminus
           f'{stars[key]["dist_pc"]:+8.3f} ', \
           f'{stars[key]["absmag_V"]:+6.3f} ', \setminus
           f'{int (key.decode ("utf-8")):4d} ', \setminus
           f'{stars[key]["name"].decode ("utf-8")}')
```

Execute above script.

% ./ai202209_s04_28.py						
# Vmag,	(B−V),	parallax,	distance	, absmag	_V, HR	, name
-1.460	+0.000	+0.375	+2.667	+1.410	2491	9Alp CMa
-0.720	+0.150	+0.028	+35.714	-3.484	2326	Alp Car
-0.040	+1.230	+0.090	+11.111	-0.269	5340	16Alp Boo
-0.010	+0.710	+0.751	+1.332	+4.368	5459	Alp1Cen
+0.030	+0.000	+0.123	+8.130	+0.480	7001	3Alp Lyr
+0.080	+0.800	+0.073	+13.699	-0.603	1708	13Alp Aur
+0.120	-0.030	+0.013	+76.923	-4.310	1713	19Bet Ori
+0.380	+0.420	+0.288	+3.472	+2.677	2943	10Alp CMi
+0.460	-0.160	+0.026	+38.462	-2.465	472	Alp Eri
+0.500	+1.850	+0.005	+200.000	-6.005	2061	58Alp Ori
+0.610	-0.230	+0.009	+111.111	-4.619	5267	Bet Cen
+0.770	+0.220	+0.198	+5.051	+2.253	7557	53Alp Aql
+0.850	+1.540	+0.048	+20.833	-0.744	1457	87Alp Tau
+0.960	+1.830	+0.024	+41.667	-2.139	6134	21Alp Sco
+0.980	-0.230	+0.023	+43.478	-2.211	5056	67Alp Vir
+1.140	+1.000	+0.094	+10.638	+1.006	2990	78Bet Gem
+1.160	+0.090	+0.149	+6.711	+2.026	8728	24Alp PsA
+1.330	-0.240	+0.008	+125.000	-4.155	4730	Alp1Cru
+1.330	+0.880	+0.751	+1.332	+5.708	5460	Alp2Cen
+1.350	-0.110	+0.045	+22.222	-0.384	3982	32Alp Leo

15.3 Making HR diagram of the brightest stars

Make a Python script to generate a HR diagram of the brightest stars. Here is an example.

```
Python Code 30: ai202209_s04_29.py
```

```
#!/usr/pkg/bin/python3.9
# Time-stamp: <2022/10/02 18:51:23 (CST) daisuke>
# importing gzip module
import gzip
# importing numpy module
import numpy
# importing matplotlib module
import matplotlib.figure
import matplotlib.backends.backend_agg
# catalogue file name
file_catalogue = 'catalog.gz'
# output file name
file_output = 'ai202209_s04_29.png'
# dictionary for storing data
stars = {}
# opening catalogue file
with gzip.open (file_catalogue, 'rb') as fh:
    # reading catalogue line-by-line
    for line in fh:
        # Harvard Revised Number of star
        HR = line[0:4].strip()
        # name
        name = line[4:14].strip ()
        # Vmag
        mag_V = line[102:107].strip()
        # B-V colour
        colour_BV = line[109:114].strip ()
        # spectral type
        sptype = line[127:147].strip ()
        # dynamical parallax flag
        dynamical_parallax = line[160]
        # parallax
        parallax = line[161:166]
        # skip, if any of mag_V, colour_BV, parallax is missing
        if ( (mag_V == '') or (colour_BV == '') or (parallax == '') ):
            continue
        # skip, if parallax is dynamical parallax
        if (dynamical_parallax == 'D'):
            continue
        # reformat parallax
        if (parallax[:2] == '+.'):
            parallax = '+0.' + parallax[2:]
        # conversion from string to float
```

```
try:
                      = float (mag_V)
            mag_V
        except:
            continue
        try:
            colour_BV = float (colour_BV)
        except:
            continue
        try:
            parallax = float (parallax)
        except:
            continue
        # skip, if parallax is negative
        if (parallax < 0.0):</pre>
            continue
        # skip, if parallax is zero
        if (parallax < 10**-4):
            continue
        # distance in parsec
        dist_pc = 1.0 / parallax
        # absolute magnitude
        absmag_V = mag_V - 5.0 * numpy.log10 (dist_pc) + 5.0
        # constructing the dictionary
        stars[HR] = {}
        stars[HR]["mag_V"]
                              = mag_V
        stars[HR]["colour_BV"] = colour_BV
        stars[HR]["parallax"] = parallax
        stars[HR]["dist_pc"] = dist_pc
        stars[HR]["absmag_V"] = absmag_V
        stars[HR]["sptype"]
                               = sptype
        stars[HR]["name"]
                               = name
# making empty numpy arrays for plotting
colour = numpy.array ([])
absmag = numpy.array ([])
# printing header
print ("# Vmag, (B-V), parallax, distance, absmag_V, HR, name")
# printing information of 1st mag stars
for key, value in sorted (stars.items (), key=lambda x: x[1]['mag_V']):
    # if mag of star is equal to or greater than 1.5, then skip
    if (stars[key]['mag_V'] >= 1.5):
        break
    # printing information
    print (f'{stars[key]["mag_V"]:+6.3f} ', \
           f'{stars[key]["colour_BV"]:+6.3f} ', \
           f'{stars[key]["parallax"]:+6.3f} ', \setminus
           f'{stars[key]["dist_pc"]:+8.3f} ', \
           f'{stars[key]["absmag_V"]:+6.3f} ', \
           f'{int (key.decode ("utf-8")):4d} ', \setminus
           f'{stars[key]["name"].decode ("utf-8")}')
    # appending data into numpy arrays
    colour = numpy.append (colour, stars[key]['colour_BV'])
```

```
absmag = numpy.append (absmag, stars[key]['absmag_V'])
# making a fig object
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111)
# labels
ax.set_xlabel ('$(B-V)$ Colour Index')
ax.set_ylabel ('Absolute Magnitude')
# flipping direction of Y-axis
ax.invert_yaxis ()
# plotting data
ax.plot (colour, absmag, linestyle='None', marker='o', color='red', \
         label='Bright stars')
# grid
ax.grid ()
# legend
ax.legend ()
# saving the figure to a file
fig.savefig (file_output)
```

```
% ./ai202209_s04_29.py
% ls *.png
ai202209_s04_00.png
                           ai202209_s04_09.png
                                                      ai202209_s04_18.png
ai202209_s04_01.png
                           ai202209_s04_10.png
                                                      ai202209_s04_19.png
ai202209_s04_02.png
                           ai202209_s04_11.png
                                                      ai202209_s04_20.png
ai202209_s04_03.png
                           ai202209_s04_12.png
                                                      ai202209_s04_21.png
ai202209_s04_04.png
                           ai202209_s04_13.png
                                                      ai202209_s04_23.png
ai202209_s04_05.png
                                                      ai202209_s04_24.png
                           ai202209_s04_14.png
ai202209_s04_06.png
                           ai202209_s04_15.png
                                                      ai202209_s04_25.png
ai202209_s04_07.png
                           ai202209_s04_16.png
                                                      ai202209_s04_26.png
ai202209_s04_08.png
                           ai202209_s04_17.png
                                                      ai202209_s04_29.png
```

Display the PNG image file. (44)

% feh -dF ai202209_s04_29.png

Try following practice.

Practice 04-27

Modify the sample script "ai202209_s04_29.py" and change colour and marker shape.

Figure 44: Plot created by the script ai202209_s04_29.py.

15.4 Changing marker colour

Change marker colour for different stars. Here is an example.

```
Python Code 31: ai202209_s04_30.py
```

```
#!/usr/pkg/bin/python3.9
#
 Time-stamp: <2022/10/02 18:51:43 (CST) daisuke>
#
# importing gzip module
import gzip
# importing numpy module
import numpy
# importing matplotlib module
import matplotlib.figure
import matplotlib.backends.backend_agg
# catalogue file name
file_catalogue = 'catalog.gz'
# output file name
file_output = 'ai202209_s04_30.png'
# dictionary for storing data
stars = \{\}
```

```
# opening catalogue file
with gzip.open (file_catalogue, 'rb') as fh:
    # reading catalogue line-by-line
    for line in fh:
        # Harvard Revised Number of star
        HR = line[0:4].strip()
        # name
        name = line[4:14].strip ()
        # Vmag
        mag_V = line[102:107].strip ()
        # B-V colour
        colour_BV = line[109:114].strip ()
        # spectral type
        sptype = line[127:147].strip ()
        # dynamical parallax flag
        dynamical_parallax = line[160]
        # parallax
        parallax = line[161:166]
        # skip, if any of mag_V, colour_BV, parallax is missing
        if ( (mag_V == '') or (colour_BV == '') or (parallax == '') ):
            continue
        # skip, if parallax is dynamical parallax
        if (dynamical_parallax == 'D'):
            continue
        # reformat parallax
        if (parallax[:2] == '+.'):
            parallax = '+0.' + parallax[2:]
        # conversion from string to float
        try:
                     = float (mag_V)
            mag_V
        except:
            continue
        try:
            colour_BV = float (colour_BV)
        except:
            continue
        try:
            parallax = float (parallax)
        except:
            continue
        # skip, if parallax is negative
        if (parallax < 0.0):</pre>
            continue
        # skip, if parallax is zero
        if (parallax < 10**-4):
            continue
        # distance in parsec
        dist_pc = 1.0 / parallax
        # absolute magnitude
        absmag_V = mag_V - 5.0 * numpy.log10 (dist_pc) + 5.0
        # constructing the dictionary
```

```
stars[HR] = {}
        stars[HR]["mag_V"]
                              = mag_V
        stars[HR]["colour_BV"] = colour_BV
        stars[HR]["parallax"] = parallax
        stars[HR]["dist_pc"]
                               = dist_pc
        stars[HR]["absmag_V"] = absmag_V
        stars[HR]["sptype"]
                               = sptype
        stars[HR]["name"]
                               = name
# making empty numpy arrays for plotting
colour = numpy.array ([])
absmag = numpy.array ([])
label = numpy.array ([], dtype=str)
# printing header
print ("# Vmag, (B-V), parallax, distance, absmag_V, HR, name")
# printing information of 1st mag stars
for key, value in sorted (stars.items (), key=lambda x: x[1]['mag_V']):
    # if mag of star is equal to or greater than 1.5, then skip
    if (stars[key]['mag_V'] >= 1.5):
        break
    # printing information
    print (f'{stars[key]["mag_V"]:+6.3f} ', \
           f'{stars[key]["colour_BV"]:+6.3f} ', \
           f'{stars[key]["parallax"]:+6.3f} ', \
           f'{stars[key]["dist_pc"]:+8.3f} ', \
           f'{stars[key]["absmag_V"]:+6.3f} ', \
           f'{int (key.decode ("utf-8")):4d} ', \setminus
           f'{stars[key]["name"].decode ("utf-8")}')
    # appending data into numpy arrays
    colour = numpy.append (colour, stars[key]['colour_BV'])
    absmag = numpy.append (absmag, stars[key]['absmag_V'])
    label = numpy.append (label, f'{stars[key]["name"].decode ("utf-8")}')
# making a fig object
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111)
# adjustment of plot
box = ax.get_position ()
ax.set_position ([box.x0, box.y0, box.width * 0.8, box.height])
# labels
ax.set_xlabel ('$(B-V)$ Colour Index')
ax.set_ylabel ('Absolute Magnitude')
# flipping direction of Y-axis
ax.invert_yaxis ()
# plotting data
for i in range (len (colour)):
    size = 15 - i * 0.5
    ax.plot (colour[i], absmag[i], linestyle='None', marker='o', \
```
png png png png png png png png png

```
markersize=size, label=label[i])
# grid
ax.grid ()
# legend
ax.legend (bbox_to_anchor=(1.0, 1.05), loc='upper left')
# saving the figure to a file
fig.savefig (file_output)
```

Execute above script.

% ./ai202209_s04_30.py		
% ls *.png		
ai202209_s04_00.png	ai202209_s04_10.png	ai202209_s04_20.
ai202209_s04_01.png	ai202209_s04_11.png	ai202209_s04_21
ai202209_s04_02.png	ai202209_s04_12.png	ai202209_s04_23
ai202209_s04_03.png	ai202209_s04_13.png	ai202209_s04_24
ai202209_s04_04.png	ai202209_s04_14.png	ai202209_s04_25
ai202209_s04_05.png	ai202209_s04_15.png	ai202209_s04_26
ai202209_s04_06.png	ai202209_s04_16.png	ai202209_s04_29
ai202209_s04_07.png	ai202209_s04_17.png	ai202209_s04_30.
ai202209_s04_08.png	ai202209_s04_18.png	
ai202209_s04_09.png	ai202209_s04_19.png	

Display the PNG image file. (45)

```
% feh -dF ai202209_s04_30.png
```

Try following practice.

Practice 04-28

Modify the sample script <code>"ai202209_s04_30.py"</code> and change marker shape.

15.5 Making a scatter plot

Make HR diagram of the brightest stars as a scatter plot. Here is an example.

Python Code 32: ai202209_s04_31.py

```
#!/usr/pkg/bin/python3.9
#
# Time-stamp: <2022/10/02 19:33:04 (CST) daisuke>
#
# importing gzip module
import gzip
# importing numpy module
import numpy
# importing matplotlib module
import matplotlib.figure
import matplotlib.backends.backend_agg
```


Figure 45: Plot created by the script ai202209_s04_30.py.

```
# catalogue file name
file_catalogue = 'catalog.gz'
# output file name
file_output = 'ai202209_s04_31.png'
# dictionary for storing data
stars = \{\}
# opening catalogue file
with gzip.open (file_catalogue, 'rb') as fh:
    # reading catalogue line-by-line
    for line in fh:
        # Harvard Revised Number of star
        HR = line[0:4].strip()
        # name
        name = line[4:14].strip ()
        # Vmag
        mag_V = line[102:107].strip ()
        # B-V colour
        colour_BV = line[109:114].strip ()
        # spectral type
        sptype = line[127:147].strip ()
        # dynamical parallax flag
        dynamical_parallax = line[160]
        # parallax
        parallax = line[161:166]
```

```
# skip, if any of mag_V, colour_BV, parallax is missing
        if ( (mag_V == '') or (colour_BV == '') or (parallax == '') ):
            continue
        # skip, if parallax is dynamical parallax
        if (dynamical_parallax == 'D'):
            continue
        # reformat parallax
        if (parallax[:2] == '+.'):
            parallax = '+0.' + parallax[2:]
        # conversion from string to float
        try:
                     = float (mag_V)
            mag_V
        except:
            continue
        try:
            colour_BV = float (colour_BV)
        except:
            continue
        trv:
            parallax = float (parallax)
        except:
            continue
        # skip, if parallax is negative
        if (parallax < 0.0):</pre>
            continue
        # skip, if parallax is zero
        if (parallax < 10**-4):
            continue
        # distance in parsec
        dist_pc = 1.0 / parallax
        # absolute magnitude
        absmag_V = mag_V - 5.0 * numpy.log10 (dist_pc) + 5.0
        # constructing the dictionary
        stars[HR] = {}
        stars[HR]["mag_V"]
                             = mag_V
        stars[HR]["colour_BV"] = colour_BV
        stars[HR]["parallax"] = parallax
        stars[HR]["dist_pc"] = dist_pc
        stars[HR]["absmag_V"] = absmag_V
        stars[HR]["sptype"]
                               = sptype
        stars[HR]["name"]
                               = name
# making empty numpy arrays for plotting
colour = numpy.array ([])
appmag = numpy.array ([])
absmag = numpy.array ([])
# printing header
print ("# Vmag, (B-V), parallax, distance, absmag_V, HR, name")
# printing information of 1st mag stars
for key, value in sorted (stars.items (), key=lambda x: x[1]['mag_V']):
    # if colour index of star is greater than 2.5, then skip
```

```
if (stars[key]['colour_BV'] > 2.5):
        break
    # printing information
    print (f'{stars[key]["mag_V"]:+6.3f} ', \
           f'{stars[key]["colour_BV"]:+6.3f} ', \
           f'{stars[key]["parallax"]:+6.3f} ', \
           f'{stars[key]["dist_pc"]:+8.3f} ', \
           f'{stars[key]["absmag_V"]:+6.3f} ', \setminus
           f'{int (key.decode ("utf-8")):4d} ', \setminus
           f'{stars[key]["name"].decode ("utf-8")}')
    # appending data into numpy arrays
    colour = numpy.append (colour, stars[key]['colour_BV'])
    appmag = numpy.append (appmag, stars[key]['mag_V'])
    absmag = numpy.append (absmag, stars[key]['absmag_V'])
# marker size and colour
marker_size = 100.0 / (appmag + 2.0)**2
marker_colour = 4.0 - colour
# making a fig object
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111)
# labels
ax.set_xlabel ('$(B-V)$ Colour Index')
ax.set_ylabel ('Absolute Magnitude')
# flipping direction of Y-axis
ax.invert_yaxis ()
# plotting data
ax.scatter (colour, absmag, s=marker_size, c=marker_colour, cmap='Spectral')
# grid
ax.grid ()
# saving the figure to a file
fig.savefig (file_output)
```

```
% ./ai202209_s04_31.py
% ls *.png
ai202209_s04_00.png
                           ai202209_s04_10.png
                                                      ai202209_s04_20.png
ai202209_s04_01.png
                           ai202209_s04_11.png
                                                      ai202209_s04_21.png
ai202209_s04_02.png
                           ai202209_s04_12.png
                                                     ai202209_s04_23.png
                                                      ai202209_s04_24.png
ai202209_s04_03.png
                           ai202209_s04_13.png
ai202209_s04_04.png
                           ai202209_s04_14.png
                                                     ai202209_s04_25.png
ai202209_s04_05.png
                           ai202209_s04_15.png
                                                     ai202209_s04_26.png
                                                     ai202209_s04_29.png
ai202209_s04_06.png
                           ai202209_s04_16.png
ai202209_s04_07.png
                           ai202209_s04_17.png
                                                      ai202209_s04_30.png
ai202209_s04_08.png
                           ai202209_s04_18.png
                                                      ai202209_s04_31.png
ai202209_s04_09.png
                           ai202209_s04_19.png
```

Display the PNG image file. (46)

% feh -dF ai202209_s04_31.png

Figure 46: Plot created by the script ai202209_s04_31.py.

Try following practice.

Practice 04-29

Modify the sample script "ai202209_s04_31.py" and change marker size, marker colour, and colour map.

16 Animation

Animation can also be created by Matplotlib.

16.1 A simple animation example

First, make a plot of an ellipse and a point.

Python Code 33: ai202209_s04_32.py

```
#!/usr/pkg/bin/python3.9
#
# Time-stamp: <2022/10/02 20:41:06 (CST) daisuke>
#
# importing numpy module
import numpy
```

KINOSHITA Daisuke

```
# importing matplotlib module
import matplotlib.backends.backend_agg
import matplotlib.figure
# output image file
file_image = 'ai202209_s04_32.png'
# an ellipse
theta = numpy.linspace (0.0, 2.0 * numpy.pi, 10**4)
ellipse_x = 5.0 * numpy.cos (theta)
ellipse_y = 3.0 * numpy.sin (theta)
# making a fig object using object-oriented interface
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111)
# plotting ellipse
ax.plot (ellipse_x, ellipse_y, linestyle='-', linewidth=3.0, color='black', \
         label='Ellipse')
# range of plot
ax.set_xlim (-6.0, +6.0)
ax.set_ylim (-6.0, +6.0)
# plotting a point
x = numpy.deg2rad (45.0)
ax.plot (5.0 * numpy.cos (x), 3.0 * numpy.sin (x), linestyle='None', \
         color='red', marker='o', markersize=15.0, label='Point')
# aspect of plot
ax.set_aspect ('equal')
# saving file
fig.savefig (file_image)
```

```
% ./ai202209_s04_32.py
% ls *.png
ai202209_s04_00.png
                                                      ai202209_s04_20.png
                           ai202209_s04_10.png
ai202209_s04_01.png
                                                      ai202209_s04_21.png
                           ai202209_s04_11.png
ai202209_s04_02.png
                           ai202209_s04_12.png
                                                      ai202209_s04_23.png
                                                      ai202209_s04_24.png
ai202209_s04_03.png
                           ai202209_s04_13.png
ai202209_s04_04.png
                           ai202209_s04_14.png
                                                      ai202209_s04_25.png
ai202209_s04_05.png
                           ai202209_s04_15.png
                                                      ai202209_s04_26.png
ai202209_s04_06.png
                           ai202209_s04_16.png
                                                      ai202209_s04_29.png
ai202209_s04_07.png
                           ai202209_s04_17.png
                                                      ai202209_s04_30.png
ai202209_s04_08.png
                                                      ai202209_s04_31.png
                           ai202209_s04_18.png
ai202209_s04_09.png
                           ai202209_s04_19.png
                                                      ai202209_s04_32.png
```

Display the PNG image file. (47)

% feh -dF ai202209_s04_32.png

Figure 47: Plot created by the script ai202209_s04_32.py.

Here is an example of simple animation.

```
Python Code 34: ai202209_s04_33.py
```

```
#!/usr/pkg/bin/python3.9
#
 Time-stamp: <2022/10/02 20:48:07 (CST) daisuke>
#
#
# importing numpy module
import numpy
# importing matplotlib module
import matplotlib.animation
import matplotlib.backends.backend_agg
import matplotlib.figure
# output animation file
file_anim = 'ai202209_s04_33.mp4'
# an ellipse
theta = numpy.linspace (0.0, 2.0 * numpy.pi, 10**4)
ellipse_x = 5.0 * numpy.cos (theta)
ellipse_y = 3.0 * numpy.sin (theta)
```

```
# number of frames for animation
n_frame = 600
# an empty list for storing frames for animation
list frame = []
# making a fig object using object-oriented interface
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111)
for i in range (n_frame):
   # initialisation of object list for plotting
   list_obj = []
    # plotting ellipse
    ellipse, = ax.plot (ellipse_x, ellipse_y, linestyle='-', linewidth=3.0, \
                        color='black', label='Ellipse')
    list_obj.append (ellipse)
    # range of plot
    ax.set_xlim (-6.0, +6.0)
    ax.set_ylim (-6.0, +6.0)
    # plotting a point
    x = numpy.deg2rad (i / n_frame * 720.0)
    point, = ax.plot (5.0 * numpy.cos (x), 3.0 * numpy.sin (x), \setminus
                      linestyle='None', color='red', marker='o', \
                      markersize=15.0, label='Point')
    list_obj.append (point)
    # aspect of plot
    ax.set_aspect ('equal')
    # appending frame
    list_frame.append (list_obj)
# making animation
anim = matplotlib.animation.ArtistAnimation (fig, list_frame, interval=50)
# saving file
anim.save (file_anim)
```

```
% ./ai202209_s04_33.py
% ls -l *.mp4
-rw-r--r- 1 daisuke taiwan 76168 Oct 2 20:48 ai202209_s04_33.mp4
```

Play the movie file.

% mplayer ai202209_s04_33.mp4

Try following practice.

Practice 04-30

Make your own animation using Matplotlib.

16.2 Visualisation of orbital motion of planets

Make a Python script to visualise orbital motion of planets in solar system.

16.2.1 Downloading positions of planets

Download positions of the Sun and four terrestrial planets.

```
Python Code 35: ai202209_s04_34.py
```

```
#!/usr/pkg/bin/python3.9
 Time-stamp: <2022/10/02 21:11:53 (CST) daisuke>
# importing astropy module
import astropy
import astropy.coordinates
import astropy.time
import astropy.units
# setting for solar system ephemeris
astropy.coordinates.solar_system_ephemeris.set ('jpl')
\# time t = 2022-10-03T00:00:00 (UTC)
t = astropy.time.Time ('2022-10-03T00:00:00', format='isot', scale='utc')
# getting positions of Sun, Mercury, Venus, Earth, and Mars
       = astropy.coordinates.get_body_barycentric ('sun', t)
sun
mercury = astropy.coordinates.get_body_barycentric ('mercury', t)
       = astropy.coordinates.get_body_barycentric ('venus', t)
venus
       = astropy.coordinates.get_body_barycentric ('earth', t)
earth
mars
       = astropy.coordinates.get_body_barycentric ('mars', t)
# printing positions of the Sun and planets
print (f'Positions of the Sun and the planets at t = {t}')
print (f'
          Sun
                : {sun}')
print (f'
           Mercury : {mercury}')
print (f'
           Venus
                  : {venus}')
print (f'
                   : {earth}')
           Earth
print (f'
           Mars
                   : {mars}')
```

Execute above script.

```
% ./ai202209_s04_34.py
Positions of the Sun and the planets at t = 2022-10-03T00:00:00.000
Sun : (-1359606.91092811, 112692.44733626, 82143.21768793) km
Mercury : (26672328.72021633, 34198126.43851055, 15385099.0063862) km
Venus : (-1.08730515e+08, 2682864.78820182, 8031811.81225642) km
Earth : (1.46318963e+08, 22695522.16446194, 9871115.46977863) km
Mars : (1.6551646e+08, 1.27725976e+08, 54113213.07823729) km
```

Use au (astronomical unit) to show the positions of planets.

Python Code 36: ai202209_s04_35.py

```
#!/usr/pkg/bin/python3.9
# Time-stamp: <2022/10/02 21:14:30 (CST) daisuke>
# importing astropy module
import astropy
import astropy.coordinates
import astropy.time
import astropy.units
# units
u_au = astropy.units.au
# setting for solar system ephemeris
astropy.coordinates.solar_system_ephemeris.set ('jpl')
\# time t = 2022-10-03T00:00:00 (UTC)
t = astropy.time.Time ('2022-10-03T00:00:00', format='isot', scale='utc')
# getting positions of Sun, Earth, and Moon
        = astropy.coordinates.get_body_barycentric ('sun', t)
sun
mercury = astropy.coordinates.get_body_barycentric ('mercury', t)
venus = astropy.coordinates.get_body_barycentric ('venus', t)
       = astropy.coordinates.get_body_barycentric ('earth', t)
earth
       = astropy.coordinates.get_body_barycentric ('mars', t)
mars
# printing positions of the Sun and planets
print (f'Positions of the Sun and the planets at t = \{t\}')
print (f' Sun:')
           X = {sun.x} = {sun.x.to (u_au)}')
print (f'
print (f'
            Y = {sun.y} = {sun.y.to (u_au)}')
print (f'
            Z = {sun.z} = {sun.z.to (u_au)}')
print (f'
          Mercury: ')
print (f'
            X = \{mercury.x\} = \{mercury.x.to (u_au)\}'\}
             Y = \{mercury.y\} = \{mercury.y.to (u_au)\}'\}
print (f'
          Z = {mercury.z} = {mercury.z.to (u_au)}')
print (f'
print (f'
          Venus:')
print (f'
            X = \{venus.x\} = \{venus.x.to (u_au)\}'
print (f'
             Y = \{venus.y\} = \{venus.y.to (u_au)\}'\}
            Z = {venus.z} = {venus.z.to (u_au)}')
print (f'
print (f'
          Earth:')
print (f'
            X = \{earth.x\} = \{earth.x.to (u_au)\}'\}
print (f'
             Y = \{earth.y\} = \{earth.y.to (u_au)\}'\}
print (f'
             Z = \{earth.z\} = \{earth.z.to (u_au)\}'\}
print (f'
           Mars:')
print (f'
             X = {mars.x} = {mars.x.to (u_au)}')
print (f'
             Y = {mars.y} = {mars.y.to (u_au)}')
print (f'
             Z = \{mars.z\} = \{mars.z.to (u_au)\}'\}
```

Execute above script.

```
% ./ai202209_s04_35.py
Positions of the Sun and the planets at t = 2022-10-03T00:00:00.000
Sun:
    X = -1359606.9109281122 km = -0.009088410848137241 AU
    Y = 112692.44733625517 km = 0.0007533024822408463 AU
```

Z = 82143.21768792676 km = 0.0005490934951384089 AU
Mercury:
X = 26672328.720216326 km = 0.17829350508406885 AU
Y = 34198126.43851055 km = 0.2286003555965757 AU
Z = 15385099.0063862 km = 0.10284303469291425 AU
Venus:
X = -108730514.89265476 km = -0.7268185996490575 AU
Y = 2682864.7882018164 km = 0.017933843414001324 AU
Z = 8031811.812256415 km = 0.05368934580869282 AU
Earth:
X = 146318962.657391 km = 0.9780818535232735 AU
Y = 22695522.164461944 km = 0.1517101951937204 AU
Z = 9871115.469778635 km = 0.0659843313517071 AU
Mars:
X = 165516459.54380506 km = 1.1064091939899854 AU
Y = 127725975.96491131 km = 0.8537954141142151 AU
Z = 54113213.07823729 km = 0.3617244872873534 AU

16.2.2 Plotting positions of planets

Make a Python script to visualise positions of planets. Here is an example.

Python Code 37: ai202209_s04_36.py

```
#!/usr/pkg/bin/python3.9
# Time-stamp: <2022/10/02 21:20:19 (CST) daisuke>
# importing sys module
import sys
# importing astropy module
import astropy
import astropy.coordinates
import astropy.time
import astropy.units
# importing matplotlib module
import matplotlib.backends.backend_agg
import matplotlib.figure
# output file name
file_output = 'ai202209_s04_36.png'
# units
u_au = astropy.units.au
# setting for solar system ephemeris
astropy.coordinates.solar_system_ephemeris.set ('jpl')
# date/time
t_str = f'2022-10-03T00:00:00'
# Astropy's time object
t = astropy.time.Time (t_str, format='isot', scale='utc')
# getting positions of Sun, Earth, and Moon
```

```
= astropy.coordinates.get_body_barycentric ('sun', t)
sun
mercury = astropy.coordinates.get_body_barycentric ('mercury', t)
      = astropy.coordinates.get_body_barycentric ('venus', t)
venus
earth
        = astropy.coordinates.get_body_barycentric ('earth', t)
        = astropy.coordinates.get_body_barycentric ('mars', t)
mars
# printing positions of the Sun and planets
print (f'Positions of the Sun and the planets at t = \{t\}')
print (f' Sun:')
print (f'
             X = {sun.x} = {sun.x.to (u_au)}')
print (f'
             Y = {sun.y} = {sun.y.to (u_au)}')
print (f'
             Z = {sun.z} = {sun.z.to (u_au)}')
print (f'
          Mercury: ')
print (f'
            X = \{mercury.x\} = \{mercury.x.to (u_au)\}'\}
print (f'
             Y = \{mercury.y\} = \{mercury.y.to (u_au)\}'\}
print (f'
             Z = \{mercury.z\} = \{mercury.z.to (u_au)\}'\}
print (f'
          Venus:')
print (f'
            X = \{venus.x\} = \{venus.x.to (u_au)\}'\}
print (f'
             Y = \{venus.y\} = \{venus.y.to (u_au)\}'
print (f'
            Z = {venus.z} = {venus.z.to (u_au)}')
print (f' Earth:')
print (f'
            X = \{earth.x\} = \{earth.x.to (u_au)\}'\}
print (f'
             Y = \{earth.y\} = \{earth.y.to (u_au)\}'\}
print (f'
            Z = \{earth.z\} = \{earth.z.to (u_au)\}'\}
print (f'
           Mars:')
print (f'
             X = {mars.x} = {mars.x.to (u_au)}')
print (f'
             Y = \{mars.y\} = \{mars.y.to (u_au)\}'\}
print (f'
            Z = \{mars.z\} = \{mars.z.to (u_au)\}'\}
# making a fig object using object-oriented interface
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111)
# settings for plot
ax.set_aspect ('equal')
ax.set_xlim (-2.0, +2.0)
ax.set_ylim (-2.0, +2.0)
ax.set_xlabel ("X [au]")
ax.set_ylabel ("Y [au]")
ax.set_title ("Positions of the Sun and planets")
# plotting the Sun
ax.plot (sun.x.to (u_au) / u_au, sun.y.to (u_au) / u_au, \
         marker='o', markersize=25, color='yellow', label='Sun')
ax.text (sun.x.to (u_au) / u_au + 0.1, sun.y.to (u_au) / u_au - 0.3, \
         f'Sun')
# plotting Mercury
ax.plot (mercury.x.to (u_au) / u_au, mercury.y.to (u_au) / u_au, \
         marker='o', markersize=5, color='cyan', label='Mercury')
ax.text (mercury.x.to (u_au) / u_au + 0.1, mercury.y.to (u_au) / u_au - 0.3, \setminus
         f'Mercury')
# plotting Venus
```

```
ax.plot (venus.x.to (u_au) / u_au, venus.y.to (u_au) / u_au, \
         marker='o', markersize=15, color='gold', label='Venus')
ax.text (venus.x.to (u_au) / u_au + 0.1, venus.y.to (u_au) / u_au - 0.3, \setminus
         f'Venus')
# plotting Earth
ax.plot (earth.x.to (u_au) / u_au, earth.y.to (u_au) / u_au, \
         marker='o', markersize=15, color='blue', label='Earth')
ax.text (earth.x.to (u_au) / u_au + 0.1, earth.y.to (u_au) / u_au - 0.3, \setminus
         f'Earth')
# plotting Mars
ax.plot (mars.x.to (u_au) / u_au, mars.y.to (u_au) / u_au, \
         marker='o', markersize=10, color='red', label='Mars')
ax.text (mars.x.to (u_au) / u_au + 0.1, mars.y.to (u_au) / u_au - 0.3, \
         f'Mars')
# plotting the time
ax.text (-1.9, -1.9, f'Date/Time: {t} (UTC)')
# grid
ax.grid ()
# saving plot
fig.savefig (file_output, dpi=225)
```

```
% ./ai202209_s04_36.py
Positions of the Sun and the planets at t = 2022-10-03T00:00:000.000
  Sun:
    X = -1359606.9109281122 km = -0.009088410848137241 AU
    Y = 112692.44733625517 km = 0.0007533024822408463 AU
    Z = 82143.21768792676 km = 0.0005490934951384089 AU
  Mercury:
    X = 26672328.720216326 km = 0.17829350508406885 AU
    Y = 34198126.43851055 km = 0.2286003555965757 AU
    Z = 15385099.0063862 km = 0.10284303469291425 AU
  Venus:
    X = -108730514.89265476 km = -0.7268185996490575 AU
    Y = 2682864.7882018164 km = 0.017933843414001324 AU
    Z = 8031811.812256415 km = 0.05368934580869282 AU
 Earth:
    X = 146318962.657391 km = 0.9780818535232735 AU
    Y = 22695522.164461944 km = 0.1517101951937204 AU
   Z = 9871115.469778635 km = 0.0659843313517071 AU
 Mars:
   X = 165516459.54380506 km = 1.1064091939899854 AU
    Y = 127725975.96491131 km = 0.8537954141142151 AU
    Z = 54113213.07823729 \text{ km} = 0.3617244872873534 \text{ AU}
% ls *.png
ai202209_s04_00.png
                          ai202209_s04_11.png
                                                     ai202209_s04_23.png
ai202209_s04_01.png
                          ai202209_s04_12.png
                                                     ai202209_s04_24.png
ai202209_s04_02.png
                          ai202209_s04_13.png
                                                     ai202209_s04_25.png
ai202209_s04_03.png
                          ai202209_s04_14.png
                                                     ai202209_s04_26.png
ai202209_s04_04.png
                          ai202209_s04_15.png
                                                     ai202209_s04_29.png
ai202209_s04_05.png
                          ai202209_s04_16.png
                                                     ai202209_s04_30.png
ai202209_s04_06.png
                                                     ai202209_s04_31.png
                          ai202209_s04_17.png
ai202209_s04_07.png
                          ai202209_s04_18.png
                                                     ai202209_s04_32.png
```

ai202209_s04_08.png ai202209_s04_19.png ai202209_s04_36.png ai202209_s04_09.png ai202209_s04_20.png ai202209_s04_10.png ai202209_s04_21.png

Display the PNG image file. (49)

% feh -dF ai202209_s04_36.png

Figure 48: Plot created by the script ai202209_s04_36.py.

Try following practice.

Practice 04-31

Modify sample script "ai202209_s04_36.py", and plot the positions of planets on at 00:00:00 (UT) on 01 January 2023.

16.2.3 Making an animation

Make a Python script to create an animation to visualise orbital motion of planets. Here is an example.

Python Code 38: ai202209_s04_37.py

```
#!/usr/pkg/bin/python3.9
#
# Time-stamp: <2022/10/02 21:32:05 (CST) daisuke>
#
# importing sys module
```

KINOSHITA Daisuke

```
import sys
# importing numpy module
import numpy
# importing astropy module
import astropy
import astropy.coordinates
import astropy.time
import astropy.units
# importing matplotlib module
import matplotlib.animation
import matplotlib.backends.backend_agg
import matplotlib.figure
# output movie file
file_output = 'ai202209_s04_37.mp4'
# units
u_au = astropy.units.au
u_hr = astropy.units.hour
# setting for solar system ephemeris
astropy.coordinates.solar_system_ephemeris.set ('jpl')
# date/time
t0_str = f'2022-10-01T00:00:00'
# time to start the simulation
t0 = astropy.time.Time (t0_str, format='isot', scale='utc')
# number of steps to calculate
n_steps = 600
# making a fig object using object-oriented interface
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111)
# an empty list of frames for animation
list_frame = []
for i in range (n_steps):
    # initialisation of object list
    list_obj = []
    # time t
    t = t0 + i * 6.0 * u_hr
    # getting positions of Sun, Earth, and Moon
          = astropy.coordinates.get_body_barycentric ('sun', t)
    sun
    mercury = astropy.coordinates.get_body_barycentric ('mercury', t)
    venus = astropy.coordinates.get_body_barycentric ('venus', t)
    earth = astropy.coordinates.get_body_barycentric ('earth', t)
```

```
= astropy.coordinates.get_body_barycentric ('mars', t)
mars
# printing positions of the Sun and planets
if (i % 100 == 0):
    print (f'Positions of the Sun and the planets at t = \{t\}')
    print (f' Sun:')
    print (f'
                 X = {sun.x} = {sun.x.to (u_au)}')
    print (f'
                 Y = {sun.y} = {sun.y.to (u_au)}')
    print (f'
                Z = {sun.z} = {sun.z.to (u_au)}')
    print (f'
              Mercury:')
    print (f'
                X = {mercury.x} = {mercury.x.to (u_au)}')
    print (f'
                 Y = \{mercury.y\} = \{mercury.y.to (u_au)\}'\}
    print (f'
                Z = \{mercury.z\} = \{mercury.z.to (u_au)\}'\}
    print (f' Venus:')
    print (f'
                X = {venus.x} = {venus.x.to (u_au)}')
    print (f'
                 Y = \{venus.y\} = \{venus.y.to (u_au)\}'\}
    print (f'
               Z = \{venus.z\} = \{venus.z.to (u_au)\}'\}
    print (f' Earth:')
    print (f'
                X = \{earth.x\} = \{earth.x.to (u_au)\}'\}
    print (f'
                 Y = \{earth.y\} = \{earth.y.to (u_au)\}'\}
    print (f'
                Z = \{earth.z\} = \{earth.z.to (u_au)\}'\}
    print (f' Mars:')
    print (f'
                X = \{mars.x\} = \{mars.x.to (u_au)\}'\}
    print (f'
                Y = \{mars.y\} = \{mars.y.to (u_au)\}'\}
    print (f'
              Z = \{mars.z\} = \{mars.z.to (u_au)\}'\}
# settings for plot
ax.set_aspect ('equal')
ax.set_xlim (-2.0, +2.0)
ax.set_ylim (-2.0, +2.0)
ax.set_xlabel ("X [au]")
ax.set_ylabel ("Y [au]")
ax.set_title ("Positions of the Sun and planets")
# plotting grids
grid_x = numpy.linspace (-2.0, +2.0, 9)
grid_y = numpy.linspace (-2.0, +2.0, 9)
for x in grid_x:
    grid, = ax.plot ([x, x], [-100, +100], \
                      linestyle='-', color='gray', alpha=0.3)
    list_obj.append (grid)
for y in grid_y:
    grid, = ax.plot ([-100, +100], [y, y], \
                     linestyle='-', color='gray', alpha=0.3)
    list_obj.append (grid)
# plotting the Sun
sun_p, = ax.plot (sun.x.to (u_au) / u_au, sun.y.to (u_au) / u_au, \
                  marker='o', markersize=25, color='yellow', label='Sun')
sun_t = ax.text (sun.x.to (u_au) / u_au + 0.1, \setminus
                 sun.y.to (u_au) / u_au - 0.3, \setminus
                 f'Sun')
list_obj.append (sun_p)
list_obj.append (sun_t)
# plotting Mercury
mercury_p, = ax.plot (mercury.x.to (u_au) / u_au, \
                       mercury.y.to (u_au) / u_au, \
                       marker='o', markersize=5, color='orange', \
```

```
label='Mercury')
    mercury_t = ax.text (mercury.x.to (u_au) / u_au + 0.1, \
                          mercury.y.to (u_au) / u_au - 0.3, \setminus
                           f'Mercury')
    list_obj.append (mercury_p)
    list_obj.append (mercury_t)
    # plotting Venus
    venus_p, = ax.plot (venus.x.to (u_au) / u_au, venus.y.to (u_au) / u_au, \
                        marker='o', markersize=15, color='green', label='Venus')
    venus_t = ax.text (venus.x.to (u_au) / u_au + 0.1, \
                        venus.y.to (u_au) / u_au - 0.3, \setminus
                        f'Venus')
    list_obj.append (venus_p)
    list_obj.append (venus_t)
    # plotting Earth
    earth_p, = ax.plot (earth.x.to (u_au) / u_au, earth.y.to (u_au) / u_au, \
                        marker='o', markersize=15, color='blue', label='Earth')
    earth_t = ax.text (earth.x.to (u_au) / u_au + 0.1, \
                        earth.y.to (u_au) / u_au - 0.3, \setminus
                        f'Earth')
    list_obj.append (earth_p)
    list_obj.append (earth_t)
    # plotting Mars
    mars_p, = ax.plot (mars.x.to (u_au) / u_au, mars.y.to (u_au) / u_au, \
                       marker='o', markersize=10, color='red', label='Mars')
    mars_t = ax.text (mars.x.to (u_au) / u_au + 0.1, \
                       mars.y.to (u_au) / u_au - 0.3, \
                       f'Mars')
    list_obj.append (mars_p)
   list_obj.append (mars_t)
    # plotting the time
    time_t = ax.text (-1.9, -1.9, f'Date/Time: {t} (UTC)')
    list_obj.append (time_t)
    # appending frame
    list_frame.append (list_obj)
# making animation
anim = matplotlib.animation.ArtistAnimation (fig, list_frame, interval=50)
# saving file
anim.save (file_output, dpi=225)
```

Execute above script. It may take a few minutes.

```
% ./ai202209_s04_37.py
Positions of the Sun and the planets at t = 2022-10-01T00:00:00.000
Sun:
    X = -1359555.7552425857 km = -0.009088068893500539 AU
    Y = 115194.00767457488 km = 0.0007700243802639558 AU
    Z = 83202.82881166792 km = 0.0005561765580107814 AU
Mercury:
    X = 34491181.53145044 km = 0.2305593078969569 AU
    Y = 29110614.012016147 km = 0.19459243554605052 AU
    Z = 11856669.207730576 km = 0.07925693829899262 AU
```

```
Venus:
   X = -108215180.3226651 km = -0.7233738008188448 AU
    Y = 8222458.849165574 km = 0.05496374253651442 AU
    Z = 10491738.045775872 km = 0.0701329370310073 AU
 Earth:
   X = 147163616.687637 km = 0.983728016976628 AU
    Y = 18044786.38427393 km = 0.12062194668840251 AU
    Z = 7854867.922300407 km = 0.0525065489605288 AU
 Mars:
    X = 167999132.72958964 km = 1.1230048391964822 AU
    Y = 124474812.6747821 km = 0.8320627298526255 AU
    Z = 52554900.693608865 km = 0.3513078123885948 AU
. . . . .
Positions of the Sun and the planets at t = 2023-02-03T00:00:00.000
  Sun:
    X = -1348823.077724259 \text{ km} = -0.009016325375574074 \text{ AU}
    Y = -40067.69881552119 km = -0.00026783602352116356 AU
    Z = 17132.230481651615 km = 0.00011452188725338332 AU
  Mercurv:
   X = -51483620.87012198 \text{ km} = -0.3441467490761684 \text{ AU}
    Y = -40434385.764847234 km = -0.27028717438053235 AU
    Z = -16365198.236670982 \text{ km} = -0.10939459338622112 \text{ AU}
  Venus:
    X = 104312662.02763678 km = 0.6972870772794815 AU
        24466574.585909918 km = 0.16354894940299386 AU
    Z = 4359088.499894538 km = 0.029138706851223505 AU
 Earth:
    X = -102940134.0407443 km = -0.688112294373347 AU
    Y = 97987287.2164075 km = 0.655004558272817 AU
    Z = 42511317.73861195 km = 0.2841706071061876 AU
  Mars:
    X = -58133921.76637931 km = -0.3886012648065004 AU
    Y = 210953632.81705666 km = 1.410137937324643 AU
    Z = 98327619.96306455 km = 0.657279542168407 AU
% ls -l *.mp4
-rw-r--r--
           1 daisuke
                       taiwan
                                 76168 Oct 2 20:48 ai202209_s04_33.mp4
                               421164 Oct
                                             2 21:35 ai202209_s04_37.mp4
            1 daisuke
                       taiwan
-rw-r--r--
```

Play the movie file.

% mplayer ai202209_s04_37.mp4

Try following practice.

Practice 04-32

```
Modify sample script "ai202209_s04_36.py", and plot the positions of planets on at 00:00:00 (UT) on 01 January 2023.
```

17 Making 3-dimensional plots

Try to make 3-dimensional plots using Matplotlib.

Figure 49: Plot created by the script ai202209_s04_36.py.

17.1 Making 3D scatter plot

Try following sample script.

Python Code 39: ai202209_s04_38.py

```
#!/usr/pkg/bin/python3.9
#
#
 Time-stamp: <2022/10/02 22:38:24 (CST) daisuke>
# importing numpy module
import numpy
# importing matplotlib module
import matplotlib.backends.backend_agg
import matplotlib.figure
# output file name
file_output = 'ai202209_s04_38.png'
# parameters for random number generation
mean
       = 0.0
stddev = 100.0
n
       = 10**4
# data to be plotted
rng = numpy.random.default_rng ()
    = rng.normal (loc=mean, scale=stddev, size=n)
х
```

```
= rng.normal (loc=mean, scale=stddev, size=n)
    = rng.normal (loc=mean, scale=stddev, size=n)
z
# making a fig object using object-oriented interface
fig = matplotlib.figure.Figure ()
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111, projection='3d')
# settings for plot
ax.set_xlim (-500.0, +500.0)
ax.set_ylim (-500.0, +500.0)
ax.set_zlim (-500.0, +500.0)
ax.set_box_aspect ( (1.0, 1.0, 1.0) )
# viewing angles of camera
e1 = 45.0
az = 60.0
ax.view_init (elev=el, azim=az)
# plotting data points
ax.scatter (x, y, z, s=1.0, color='blue', alpha=0.1)
# saving file
fig.savefig (file_output, dpi=200)
```

```
% ./ai202209_s04_38.py
% ls *.png
ai202209_s04_00.png
                           ai202209_s04_11.png
                                                      ai202209_s04_23.png
ai202209_s04_01.png
                           ai202209_s04_12.png
                                                      ai202209_s04_24.png
ai202209_s04_02.png
                                                      ai202209_s04_25.png
                           ai202209_s04_13.png
ai202209_s04_03.png
                           ai202209_s04_14.png
                                                      ai202209_s04_26.png
ai202209_s04_04.png
                           ai202209_s04_15.png
                                                      ai202209_s04_29.png
ai202209_s04_05.png
                           ai202209_s04_16.png
                                                      ai202209_s04_30.png
                           ai202209_s04_17.png
ai202209_s04_06.png
                                                      ai202209_s04_31.png
ai202209_s04_07.png
                           ai202209_s04_18.png
                                                      ai202209_s04_32.png
ai202209_s04_08.png
                           ai202209_s04_19.png
                                                      ai202209_s04_36.png
ai202209_s04_09.png
                           ai202209_s04_20.png
                                                      ai202209_s04_38.png
ai202209_s04_10.png
                           ai202209_s04_21.png
```

Display the PNG image file. (50)

% feh -dF ai202209_s04_38.png

Try following practice.

Practice 04-33

Make your own Python script to generate 3D scatter plot using Matplotlib.

Figure 50: Plot created by the script ai202209_s04_38.py.

17.2 Making 3D line plot

Try following sample script.

Python Code 40: ai202209_s04_39.py

```
#!/usr/pkg/bin/python3.9
 Time-stamp: <2022/10/02 22:29:01 (CST) daisuke>
#
# importing numpy module
import numpy
# importing matplotlib module
import matplotlib.backends.backend_agg
import matplotlib.figure
# output file name
file_output = 'ai202209_s04_39.png'
# data to be plotted
theta = numpy.linspace (0.0, 10.0 * numpy.pi, 1000)
 = numpy.cos (theta)
x
у
 = numpy.sin (theta)
 = theta * 0.2
7.
 making a fig object using object-oriented interface
#
fig = matplotlib.figure.Figure ()
```

```
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111, projection='3d')
# settings for plot
ax.set_xlim (-1.5, +1.5)
ax.set_ylim (-1.5, +1.5)
ax.set_zlim (-0.5, +5.5)
ax.set_box_aspect ( (3.0, 3.0, 6.0) )
# viewing angles of camera
e1 = 30.0
az = -60.0
ax.view_init (elev=el, azim=az)
# plotting data points
ax.plot (x, y, z, color='blue')
# saving file
fig.savefig (file_output, dpi=200)
```

% ./ai202209_s04_39.py		
% ls *.png		
ai202209_s04_00.png	ai202209_s04_11.png	ai202209_s04_23.png
ai202209_s04_01.png	ai202209_s04_12.png	ai202209_s04_24.png
ai202209_s04_02.png	ai202209_s04_13.png	ai202209_s04_25.png
ai202209_s04_03.png	ai202209_s04_14.png	ai202209_s04_26.png
ai202209_s04_04.png	ai202209_s04_15.png	ai202209_s04_29.png
ai202209_s04_05.png	ai202209_s04_16.png	ai202209_s04_30.png
ai202209_s04_06.png	ai202209_s04_17.png	ai202209_s04_31.png
ai202209_s04_07.png	ai202209_s04_18.png	ai202209_s04_32.png
ai202209_s04_08.png	ai202209_s04_19.png	ai202209_s04_36.png
ai202209_s04_09.png	ai202209_s04_20.png	ai202209_s04_38.png
ai202209_s04_10.png	ai202209_s04_21.png	ai202209_s04_39.png

Display the PNG image file. (51)

```
% feh -dF ai202209_s04_39.png
```

Try following practice.

Practice 04-34

Make your own Python script to generate 3D line plot using Matplotlib.

18 3D structure of inner solar system

Visualise the 3-dimensional structure of inner solar system.

Figure 51: Plot created by the script ai202209_s04_39.py.

18.1 Making a movie of orbital motion of planets and 50 asteroids

Python Code 41: ai202209_s04_40.py

```
#!/usr/pkg/bin/python3.9
 Time-stamp: <2022/10/02 22:43:49 (CST) daisuke>
#
#
# importing sys module
import sys
# importing numpy module
import numpy
# importing astropy module
import astropy
import astropy.coordinates
import astropy.time
import astropy.units
# importing astroquery module
import astroquery.jplhorizons
# importing matplotlib module
import matplotlib.animation
import matplotlib.backends.backend_agg
import matplotlib.figure
```

```
# output file name prefix
file_prefix = 'solsys_3d_struct'
# output file name extension
file_ext
           = 'png'
# units
u_au = astropy.units.au
u_hr = astropy.units.hour
# number of steps to calculate
n_steps = 600
# number of asteroids to plot
n_{asteroids} = 50
# step size in hr
step_hr = 12
step_str = f'{step_hr}h'
step
       = step_hr * u_hr
# an empty list for storing asteroids positions
list_asteroids = []
# date/time to start the simulation
t_start_str = f'2022-07-01T00:00:00.000'
# time to start the simulation in astropy.time object
t_start = astropy.time.Time (t_start_str, format='isot', scale='utc')
# time to stop the simulation in astropy.time object
t_stop = t_start + step * n_steps
# an empty list for storing major planets positions
list_major = []
# major body names (Sun, Mercury, Venus, Earth, Mars, Jupiter)
list_names = ['10', '199', '299', '399', '499', '599']
# getting positions of the Sun, Mercury, Venus, Earth, Mars, and Jupiter
# from JPL/Horizons
print (f'Now, getting positions of the Sun and planets...')
for i in list_names:
    print (i)
    query = astroquery.jplhorizons.Horizons (id_type=None, id=f'{i}', \
                                              location='00', \setminus
                                              epochs={'start': t_start.iso, \
                                                       'stop': t_stop.iso, \
                                                       'step': step_str})
    vec = query.vectors ()
    print (vec)
    x = vec['x']
    y = vec['y']
    z = vec['z']
    list_major.append ( [x, y, z] )
print (f'Finished getting positions of the Sun and planets!')
# getting asteroids positions from JPL/Horizons
```

```
print (f'Now, getting asteroids positions...')
for i in range (1, n_asteroids + 1):
    if (i % 10 == 0):
        print (f' now, getting positions of asteroid ({i})...')
    ast_query = astroquery.jplhorizons.Horizons (id_type='smallbody', \
                                                  id=f'{i}', \setminus
                                                  location='00', \setminus
                                                  epochs={'start': t_start.iso, \
                                                           'stop': t_stop.iso, \
                                                           'step': step_str})
   ast_vec = ast_query.vectors ()
   x = ast_vec['x']
   y = ast_vec['y']
   z = ast_vec['z']
    list_asteroids.append ( [x, y, z] )
print (f'Finished getting asteroids positions...')
# making a fig object using object-oriented interface
fig = matplotlib.figure.Figure ()
fig.subplots_adjust (left=0.0, right=1.0, bottom=0.0, top=1.0)
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111, projection='3d')
# an empty list of frames for animation
list_frame = []
# definition of a function for making a sphere
def make_sphere (x_c, y_c, z_c, radius, colour):
   u = numpy.linspace (0, 2 * numpy.pi, 1000)
    v = numpy.linspace (0, numpy.pi, 1000)
   x = radius * numpy.outer (numpy.cos(u), numpy.sin(v)) + x_c
   y = radius * numpy.outer (numpy.sin(u), numpy.sin(v)) + y_c
    z = radius * numpy.outer (numpy.ones(numpy.size(u)), numpy.cos(v)) + z_c
    # plotting the surface
    sphere = ax.plot_surface (x, y, z, color=colour, antialiased=False, \backslash
                                shade=True, rcount=100, ccount=100)
    return (sphere)
# initial value of 'elev' angle
e1 = 90.0
# initial value of 'azim' angle
az = 0.0
for i in range (n_steps):
    # clearing previous axes
   ax.cla ()
    # time t
    t = t_start + i * 12.0 * u_hr
    # printing positions of the Sun, planets, and asteroids
    if (i % 10 == 0):
        print (f'Now, making a plot for {t}...')
```

```
# settings for plot
ax.set_xlim (-6.0, +6.0)
ax.set_ylim (-6.0, +6.0)
ax.set_zlim (-2.0, +2.0)
ax.set_box_aspect ( (6.0, 6.0, 2.0) )
# viewing angles of camera
ax.view_init (elev=el, azim=az)
# using black background colour
fig.set_facecolor ('black')
ax.set_facecolor ('black')
ax.grid (False)
ax.w_xaxis.set_pane_color ((0.0, 0.0, 0.0, 0.0))
ax.w_yaxis.set_pane_color ((0.0, 0.0, 0.0, 0.0))
ax.w_zaxis.set_pane_color ((0.0, 0.0, 0.0, 0.0))
# plotting the Sun
sun = make_sphere (list_major[0][0][i], \
                    list_major[0][1][i], \
                    list_major[0][2][i], \setminus
                    0.25, 'yellow')
# plotting Mercury
mercury = make_sphere (list_major[1][0][i], \
                        list_major[1][1][i], \
                        list_major[1][2][i], \setminus
                        0.05, 'cyan')
# plotting Venus
venus = make_sphere (list_major[2][0][i], \
                      list_major[2][1][i], \setminus
                      list_major[2][2][i], \
                      0.15, 'gold')
# plotting Earth
earth = make_sphere (list_major[3][0][i], \
                      list_major[3][1][i], \
                      list_major[3][2][i], \setminus
                      0.15, 'blue')
# plotting Mars
mars = make_sphere (list_major[4][0][i], \
                     list_major[4][1][i], \setminus
                     list_major[4][2][i], \
                     0.15, 'red')
# plotting Jupiter
jupiter = make_sphere (list_major[5][0][i], \
                        list_major[5][1][i], \setminus
                        list_major[5][2][i], \setminus
                        0.15, 'bisque')
# plotting asteroids
for j in range (0, n_asteroids):
    asteroid = ax.scatter (list_asteroids[j][0][i], \
                             list_asteroids[j][1][i], \
                             list_asteroids[j][2][i], \
                            s = 0.1, \
```

color='saddlebrown')

Execute above script.

% ./ai202209_s04_40.py Now, getting positions of the Sun and planets... 10 targetname datetime_jd ... range range_rate ___ d . . . AU AU / d ... -----Sun (10) 2459761.5 ... 0.00919225694612516 -4.110279681942871e-07 Sun (10) 2459762.0 ... 0.009192050821591085 -4.134694264547141e-07 Sun (10) 2459762.5 ... 0.009191843477503799 -4.159060529885512e-07 Sun (10) 2459763.0 ... 0.00919163491647408 -4.183370625836328e-07 Sun (10) 2459763.5 ... 0.009191425141513318 -4.207616386659481e-07 Sun (10) 2459764.0 ... 0.009191214156048148 -4.231789376034708e-07 Sun (10) 2459764.5 ... 0.00919100196393274 -4.255880938532694e-07 2459765.0 ... 0.009190788569458251 -4.279882260847911e-07 Sun (10) Sun (10) 2459765.5 ... 0.009190573977358986 -4.303784443249411e-07 Sun (10) 2459766.0 ... 0.009190358192814718 -4.327578580932779e-07 Sun (10) 2459766.5 ... 0.00919014122144873 -4.35125585428295e-07 Sun (10) 2459767.0 ... 0.009189923069321133 -4.37480762648432e-07 Sun (10) 2459767.5 ... 0.00918970374291717 -4.398225546441054e-07 Sun (10) 2459768.0 ... 0.009189483249130296 -4.421501654596851e-07 Sun (10) 2459768.5 ... 0.00918926159523994 -4.444628488970648e-07 Sun (10) 2460054.0 ... 0.008924970359344905 -1.370193489082736e-06 Sun (10) 2460054.5 ... 0.00892428511440673 -1.370785591967988e-06 Sun (10) 2460055.0 ... 0.008923599574404022 -1.371373787812672e-06 Sun (10) 2460055.5 ... 0.008922913741230698 -1.371958312474024e-06 Sun (10) 2460056.0 ... 0.0089222276166666499 -1.372539386985973e-06 Sun (10) 2460056.5 ... 0.008921541202384083 -1.373117218859561e-06 Sun (10) 2460057.0 ... 0.008920854499955479 -1.373692003317508e-06 Sun (10) 2460057.5 ... 0.008920167510857929 -1.374263924459444e-06 Sun (10) 2460058.0 ... 0.008919480236479179 -1.37483315635616e-06 Sun (10) 2460058.5 ... 0.008918792678122225 -1.375399864072787e-06 Sun (10) 2460059.0 ... 0.008918104837009591 -1.375964204621995e-06 Sun (10) 2460059.5 ... 0.008917416714287123 -1.376526327849376e-06 Sun (10) 2460060.0 ... 0.00891672831102735 -1.377086377253719e-06 Sun (10) 2460060.5 ... 0.008916039628232493 -1.377644490745359e-06 Sun (10) 2460061.0 ... 0.008915350666837062 -1.378200801345849e-06 Sun (10) 2460061.5 ... 0.008914661427710146 -1.37875543783199e-06 Length = 601 rows

199				
targetname	datetime_jd .	•••	range	range_rate
	d.		AU	AU / d
Mercury (199)	2459761.5 .		0.3274393111343241	-0.004565830548086274
Mercury (199)	2459762.0 .		0.3252023885183809	-0.004379622776293806
Mercury (199)	2459762.5		0.3230619193583397	-0.00418003186607631
Mercury (199)	2459763 0		0 3210245651769797	-0 003967192900115614
Mercury (199)	2459763 5	•••	0 3190968970577558	-0.0037/1333630063151
Mercury (199)	2400700.0 .	•••	0 3172853477717369	-0 003502780467817527
Morcury (199)	2400704.0 .	•••	0.3155961611762532	-0.003251963361740028
Morcury (199)	2459704.5 .	•••	0.3140353305111420	
Mercury (199)	2459705.0 .	•••	0.31403555555111439	-0.002989419285078528
Mercury (199)	2459765.5 .	•••	0.3126085893527096	-0.002/15/940/4/05812
Mercury (199)	2459766.0 .	•••	0.3113212671107578	-0.00243184238347338
Mercury (199)	2459766.5 .	•••	0.3101783250629669	-0.002138425550114537
Mercury (199)	2459767.0 .	•••	0.3091842590054414	-0.0018365072466839
Mercury (199)	2459767.5 .	•••	0.3083430586513591	-0.001527146833589715
Mercury (199)	2459768.0 .	•••	0.3076581619245999	-0.001211490433849091
Mercury (199)	2459768.5 .	•••	0.3071324142673004	-0.0008907598277119476
		•••		
Mercury (199)	2460054.0 .	•••	0.393483108044801	0.005801934294249164
Mercury (199)	2460054.5 .	•••	0.3963689808676535	0.005740627356391798
Mercury (199)	2460055.0 .	•••	0.3992228324346696	0.005673902118757671
Mercury (199)	2460055.5 .	•••	0.4020420316210633	0.005602068195627878
Mercury (199)	2460056.0 .	•••	0.4048240984003011	0.005525420409186732
Mercury (199)	2460056.5 .	•••	0.407566696519905	0.005444239089678288
Mercury (199)	2460057.0 .		0.4102676263450556	0.005358790443726078
Mercury (199)	2460057.5 .		0.4129248179001903	0.005269326975648785
Mercury (199)	2460058.0 .		0.4155363241317504	0.00517608794874178
Mercury (199)	2460058.5 .		0.4181003144092107	0.005079299875418875
Mercury (199)	2460059.0 .		0.4206150682764054	0.004979177026825403
Mercurv (199)	2460059.5 .		0.4230789694608592	0.00487592195404486
Mercury (199)	2460060.0 .		0.4254905001452272	0.004769726014347556
Mercury (199)	2460060.5		0.4278482355019786	0.004660769897090876
Mercury (199)	2460061 0	•••	0 4301508384900073	0 004549224144886354
Mercury (199)	2460061.5	•••	0 4323970549098948	0 004435249666515193
Length = 601	2100001.0 . rows	•••	0.1020010010000010	0.001100210000010100
Longon oor				
599				
targetname	<pre>datetime_jd .</pre>	•••	range	range_rate
	d.	•••	AU	AU / d
		•••		
Jupiter (599)	2459761.5 .	•••	4.9538498697702	-0.0001151013025872309
Jupiter (599)	2459762.0 .	•••	4.953792202039543	-0.0001155078574475694
Jupiter (599)	2459762.5 .	•••	4.953734546658476	-0.0001149273103477378
Jupiter (599)	2459763.0 .	•••	4.953677305141171	-0.0001141870856057821
Jupiter (599)	2459763.5 .	•••	4.953620158902407	-0.0001145158410096909
Jupiter (599)	2459764.0 .	•••	4.953562853808891	-0.0001145022107028578
Jupiter (599)	2459764.5 .	• •	4.953505826007736	-0.0001135851731288924
Jupiter (599)	2459765.0 .		4.953449109623551	-0.0001135338035627637

2459765.5 ... 4.953392145953957 -0.0001142752345458102

2459767.0 ... 4.953221661376215 -0.0001133038183902508

2459767.5 ... 4.953165018997601 -0.0001130515132368666

2459768.0 ... 4.953108811456524 -0.0001117100486845901

2459768.5 ... 4.953053180985981 -0.0001110648566765412

2459766.5 ... 4.953278258075731 -0.0001131958475067818

Jupiter (599) 2459766.0 ... 4.953335027348261 -0.000113974440272014

Jupiter (599)

Jupiter (599)

Jupiter (599)

Jupiter (599)

Jupiter (599)

Jupiter (599)

```
. . .
                      . . . . . . .
Jupiter (599)
                2460054.0 ... 4.94476376624791
                                                  5.372708298809731e-05
Jupiter (599)
                2460054.5 ... 4.944790761781209
                                                  5.449456699472935e-05
Jupiter (599)
                2460055.0 ... 4.944818342816371
                                                  5.572112590526076e-05
Jupiter (599)
                2460055.5 ... 4.944846286238746
                                                  5.589534776253733e-05
Jupiter (599)
                2460056.0 ... 4.944874252883687
                                                  5.614093619470511e-05
Jupiter (599)
                2460056.5 ... 4.944902586677033
                                                  5.722390271093653e-05
Jupiter (599)
                2460057.0 ... 4.94493132862853
                                                  5.748972050871348e-05
Jupiter (599)
                2460057.5 ... 4.944959902988639
                                                  5.681701865819641e-05
Jupiter (599)
                2460058.0 ... 4.944988323829351
                                                  5.70960790142461e-05
Jupiter (599)
                2460058.5 ... 4.945017094355454
                                                  5.789704712465381e-05
Jupiter (599)
                2460059.0 ... 4.945046028676242
                                                  5.766902170669467e-05
Jupiter (599)
                2460059.5 ... 4.945074762345876
                                                  5.743699615842592e-05
Jupiter (599)
                2460060.0 ... 4.945103658150575
                                                   5.82326176466909e-05
Jupiter (599)
                2460060.5 ... 4.945132901440893
                                                  5.852248883376549e-05
Jupiter (599)
                2460061.0 ... 4.945162017455077
                                                  5.794554607016282e-05
                2460061.5 ... 4.945191031301317
Jupiter (599)
                                                  5.836848559158515e-05
Length = 601 \text{ rows}
Finished getting positions of the Sun and planets!
Now, getting asteroids positions...
 now, getting positions of asteroid (10)...
 now, getting positions of asteroid (20)...
 now, getting positions of asteroid (30)...
 now, getting positions of asteroid (40)...
 now, getting positions of asteroid (50)...
Finished getting asteroids positions...
Now, making a plot for 2022-07-01T00:00:00.000...
Now, making a plot for 2022-07-06T00:00:00.000...
Now, making a plot for 2022-07-11T00:00:00.000...
Now, making a plot for 2022-07-16T00:00:00.000...
Now, making a plot for 2022-07-21T00:00:00.000...
Now, making a plot for 2022-07-26T00:00:00.000...
Now, making a plot for 2022-07-31T00:00:00.000...
Now, making a plot for 2022-08-05T00:00:00.000...
Now, making a plot for 2022-08-10T00:00:00.000...
Now, making a plot for 2022-08-15T00:00:00.000...
. . . . .
Now, making a plot for 2023-03-08T00:00:00.000...
Now, making a plot for 2023-03-13T00:00:00.000...
Now, making a plot for 2023-03-18T00:00:00.000...
Now, making a plot for 2023-03-23T00:00:00.000...
Now, making a plot for 2023-03-28T00:00:00.000...
Now, making a plot for 2023-04-02T00:00:00.000...
Now, making a plot for 2023-04-07T00:00:00.000...
Now, making a plot for 2023-04-12T00:00:00.000...
Now, making a plot for 2023-04-17T00:00:00.000...
Now, making a plot for 2023-04-22T00:00:00.000...
% ls solsys_3d_struct_*.png
solsys_3d_struct_000000.png
                                         solsys_3d_struct_000300.png
solsys_3d_struct_000001.png
                                         solsys_3d_struct_000301.png
solsys_3d_struct_000002.png
                                         solsys_3d_struct_000302.png
solsys_3d_struct_000003.png
                                         solsys_3d_struct_000303.png
solsys_3d_struct_000004.png
                                         solsys_3d_struct_000304.png
solsys_3d_struct_000005.png
                                         solsys_3d_struct_000305.png
solsys_3d_struct_000006.png
                                         solsys_3d_struct_000306.png
solsys_3d_struct_000007.png
                                         solsys_3d_struct_000307.png
solsys_3d_struct_000008.png
                                         solsys_3d_struct_000308.png
```

<pre>solsys_3d_struct_000309.png</pre>
<pre>solsys_3d_struct_000590.png</pre>
<pre>solsys_3d_struct_000591.png</pre>
<pre>solsys_3d_struct_000592.png</pre>
<pre>solsys_3d_struct_000593.png</pre>
<pre>solsys_3d_struct_000594.png</pre>
solsys_3d_struct_000595.png
solsys_3d_struct_000596.png
solsys_3d_struct_000597.png
solsys_3d_struct_000598.png
solsys_3d_struct_000599.png

Now, you have 600 PNG files. Construct a MPEG-4 movie file from these 600 PNG files using the command ffmpeg.

```
% ffmpeg5 -f image2 -start_number 0 -framerate 30 -i solsys_3d_struct_%06d.png \
? -an -vcodec libx264 -pix_fmt yuv420p -threads 8 solsys_3d_struct.mp4
% ls -l *.mp4
-rw-r--r- 1 daisuke taiwan 76168 Oct 2 20:48 ai202209_s04_33.mp4
-rw-r--r- 1 daisuke taiwan 421164 Oct 2 21:35 ai202209_s04_37.mp4
-rw-r--r- 1 daisuke taiwan 364013 Oct 2 23:42 solsys_3d_struct.mp4
```

Play the movie file.

% mplayer solsys_3d_struct.mp4

18.2 Changing camera viewing angle

Change the camera viewing angle.

Python Code 42: ai202209_s04_41.py

```
#!/usr/pkg/bin/python3.9
 Time-stamp: <2022/10/02 23:01:53 (CST) daisuke>
#
#
# importing sys module
import sys
# importing numpy module
import numpy
# importing astropy module
import astropy
import astropy.coordinates
import astropy.time
import astropy.units
# importing astroquery module
import astroquery.jplhorizons
# importing matplotlib module
import matplotlib.animation
```

```
import matplotlib.backends.backend_agg
import matplotlib.figure
# output file name prefix
file_prefix = 'solsys_3d_struct2'
# output file name extension
file_ext
           = 'png'
# units
u_au = astropy.units.au
u_hr = astropy.units.hour
# number of steps to calculate
n_steps = 600
# number of asteroids to plot
n asteroids = 50
# step size in hr
step_hr = 12
step_str = f'{step_hr}h'
        = step_hr * u_hr
step
# an empty list for storing asteroids positions
list_asteroids = []
# date/time to start the simulation
t_start_str = f'2022-07-01T00:00:00.000'
# time to start the simulation in astropy.time object
t_start = astropy.time.Time (t_start_str, format='isot', scale='utc')
# time to stop the simulation in astropy.time object
t_stop = t_start + step * n_steps
# an empty list for storing major planets positions
list_major = []
# major body names (Sun, Mercury, Venus, Earth, Mars, Jupiter)
list_names = ['10', '199', '299', '399', '499', '599']
# getting positions of the Sun, Mercury, Venus, Earth, Mars, and Jupiter
# from JPL/Horizons
print (f'Now, getting positions of the Sun and planets...')
for i in list_names:
   print (i)
    query = astroquery.jplhorizons.Horizons (id_type=None, id=f'{i}', \
                                              location='00', \setminus
                                              epochs={'start': t_start.iso, \
                                                      'stop': t_stop.iso, \
                                                      'step': step_str})
    vec = query.vectors ()
   print (vec)
   x = vec['x']
    y = vec['y']
    z = vec['z']
    list_major.append ( [x, y, z] )
print (f'Finished getting positions of the Sun and planets!')
```

```
# getting asteroids positions from JPL/Horizons
print (f'Now, getting asteroids positions...')
for i in range (1, n_asteroids + 1):
    if (i % 10 == 0):
        print (f' now, getting positions of asteroid ({i})...')
    ast_query = astroquery.jplhorizons.Horizons (id_type='smallbody', \
                                                  id=f'{i}', \setminus
                                                  location='@0', \
                                                  epochs={'start': t_start.iso, \
                                                          'stop': t_stop.iso, \
                                                          'step': step_str})
   ast_vec = ast_query.vectors ()
   x = ast_vec['x']
   y = ast_vec['y']
   z = ast_vec['z']
    list_asteroids.append ( [x, y, z] )
print (f'Finished getting asteroids positions...')
# making a fig object using object-oriented interface
fig = matplotlib.figure.Figure ()
fig.subplots_adjust (left=0.0, right=1.0, bottom=0.0, top=1.0)
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
# making an axes object
ax = fig.add_subplot (111, projection='3d')
# an empty list of frames for animation
list_frame = []
# definition of a function for making a sphere
def make_sphere (x_c, y_c, z_c, radius, colour):
    u = numpy.linspace (0, 2 * numpy.pi, 1000)
    v = numpy.linspace (0, numpy.pi, 1000)
   x = radius * numpy.outer (numpy.cos(u), numpy.sin(v)) + x_c
    y = radius * numpy.outer (numpy.sin(u), numpy.sin(v)) + y_c
    z = radius * numpy.outer (numpy.ones(numpy.size(u)), numpy.cos(v)) + z_c
    # plotting the surface
    sphere = ax.plot_surface (x, y, z, color=colour, antialiased=False, \
                               shade=True, rcount=100, ccount=100)
    return (sphere)
# initial value of 'elev' angle
e1 = 30.0
# initial value of 'azim' angle
az = 0.0
for i in range (n_steps):
   # clearing previous axes
   ax.cla ()
    # time t
    t = t_start + i * 12.0 * u_hr
    # printing positions of the Sun, planets, and asteroids
    if (i % 10 == 0):
```

```
print (f'Now, making a plot for {t}...')
# settings for plot
ax.set_xlim (-6.0, +6.0)
ax.set_ylim (-6.0, +6.0)
ax.set_zlim (-2.0, +2.0)
ax.set_box_aspect ( (6.0, 6.0, 2.0) )
# viewing angles of camera
ax.view_init (elev=el, azim=az)
# using black background colour
fig.set_facecolor ('black')
ax.set_facecolor ('black')
ax.grid (False)
ax.w_xaxis.set_pane_color ((0.0, 0.0, 0.0, 0.0))
ax.w_yaxis.set_pane_color ((0.0, 0.0, 0.0, 0.0))
ax.w_zaxis.set_pane_color ((0.0, 0.0, 0.0, 0.0))
# plotting the Sun
sun = make_sphere (list_major[0][0][i], \
                   list_major[0][1][i], \
                    list_major[0][2][i], \
                    0.25, 'yellow')
# plotting Mercury
mercury = make_sphere (list_major[1][0][i], \
                        list_major[1][1][i], \setminus
                        list_major[1][2][i], \setminus
                        0.05, 'cyan')
# plotting Venus
venus = make_sphere (list_major[2][0][i], \
                      list_major[2][1][i], \
                      list_major[2][2][i], \
                      0.15, 'gold')
# plotting Earth
earth = make_sphere (list_major[3][0][i], \
                     list_major[3][1][i], \
                      list_major[3][2][i], \
                      0.15, 'blue')
# plotting Mars
mars = make_sphere (list_major[4][0][i], \
                     list_major[4][1][i], \
                     list_major[4][2][i], \
                     0.15, 'red')
# plotting Jupiter
jupiter = make_sphere (list_major[5][0][i], \
                       list_major[5][1][i], \setminus
                        list_major[5][2][i], \setminus
                        0.15, 'bisque')
# plotting asteroids
for j in range (0, n_asteroids):
    asteroid = ax.scatter (list_asteroids[j][0][i], \
                            list_asteroids[j][1][i], \
```

```
list_asteroids[j][2][i], \
                             s = 0.1, \
                             color='saddlebrown')
# title
title = ax.text2D (0.5, 0.95, f'Inner Solar System', \
                    color = 'white', \setminus
                    horizontalalignment='center', \
                    transform=ax.transAxes)
# plotting the time
time = ax.text2D (0.5, 0.05, f'Date/Time: {t} (UTC)', \
                   color='white', \setminus
                   horizontalalignment='center', \
                   transform=ax.transAxes)
# image file
file_image = f'{file_prefix}_{i:06d}.{file_ext}'
fig.savefig (file_image, dpi=255)
```

% ./dizozzoo_bo+_+1.py	
% ls solsys_3d_struct2_*.png	
solsys_3d_struct2_000000.png	<pre>solsys_3d_struct2_000300.png</pre>
solsys_3d_struct2_000001.png	<pre>solsys_3d_struct2_000301.png</pre>
solsys_3d_struct2_000002.png	<pre>solsys_3d_struct2_000302.png</pre>
solsys_3d_struct2_000003.png	<pre>solsys_3d_struct2_000303.png</pre>
solsys_3d_struct2_000004.png	<pre>solsys_3d_struct2_000304.png</pre>
solsys_3d_struct2_000005.png	<pre>solsys_3d_struct2_000305.png</pre>
solsys_3d_struct2_000006.png	<pre>solsys_3d_struct2_000306.png</pre>
solsys_3d_struct2_000007.png	<pre>solsys_3d_struct2_000307.png</pre>
solsys_3d_struct2_000008.png	<pre>solsys_3d_struct2_000308.png</pre>
solsys_3d_struct2_000009.png	<pre>solsys_3d_struct2_000309.png</pre>
 solsys_3d_struct2_000290.png	solsys_3d_struct2_000590.png
<pre> solsys_3d_struct2_000290.png solsys_3d_struct2_000291.png</pre>	<pre>solsys_3d_struct2_000590.png solsys_3d_struct2_000591.png</pre>
<pre> solsys_3d_struct2_000290.png solsys_3d_struct2_000291.png solsys_3d_struct2_000292.png</pre>	<pre>solsys_3d_struct2_000590.png solsys_3d_struct2_000591.png solsys_3d_struct2_000592.png</pre>
<pre>solsys_3d_struct2_000290.png solsys_3d_struct2_000291.png solsys_3d_struct2_000292.png solsys_3d_struct2_000293.png</pre>	<pre>solsys_3d_struct2_000590.png solsys_3d_struct2_000591.png solsys_3d_struct2_000592.png solsys_3d_struct2_000593.png</pre>
<pre>solsys_3d_struct2_000290.png solsys_3d_struct2_000291.png solsys_3d_struct2_000292.png solsys_3d_struct2_000293.png solsys_3d_struct2_000294.png</pre>	<pre>solsys_3d_struct2_000590.png solsys_3d_struct2_000591.png solsys_3d_struct2_000592.png solsys_3d_struct2_000593.png solsys_3d_struct2_000594.png</pre>
<pre>solsys_3d_struct2_000290.png solsys_3d_struct2_000291.png solsys_3d_struct2_000292.png solsys_3d_struct2_000293.png solsys_3d_struct2_000294.png solsys_3d_struct2_000295.png</pre>	<pre>solsys_3d_struct2_000590.png solsys_3d_struct2_000591.png solsys_3d_struct2_000592.png solsys_3d_struct2_000593.png solsys_3d_struct2_000594.png solsys_3d_struct2_000595.png</pre>
<pre>solsys_3d_struct2_000290.png solsys_3d_struct2_000291.png solsys_3d_struct2_000292.png solsys_3d_struct2_000293.png solsys_3d_struct2_000294.png solsys_3d_struct2_000295.png solsys_3d_struct2_000296.png</pre>	<pre>solsys_3d_struct2_000590.png solsys_3d_struct2_000591.png solsys_3d_struct2_000592.png solsys_3d_struct2_000593.png solsys_3d_struct2_000594.png solsys_3d_struct2_000595.png solsys_3d_struct2_000596.png</pre>
<pre>solsys_3d_struct2_000290.png solsys_3d_struct2_000291.png solsys_3d_struct2_000292.png solsys_3d_struct2_000293.png solsys_3d_struct2_000294.png solsys_3d_struct2_000295.png solsys_3d_struct2_000296.png solsys_3d_struct2_000297.png</pre>	<pre>solsys_3d_struct2_000590.png solsys_3d_struct2_000591.png solsys_3d_struct2_000592.png solsys_3d_struct2_000593.png solsys_3d_struct2_000594.png solsys_3d_struct2_000595.png solsys_3d_struct2_000596.png solsys_3d_struct2_000597.png</pre>
<pre>solsys_3d_struct2_000290.png solsys_3d_struct2_000291.png solsys_3d_struct2_000292.png solsys_3d_struct2_000293.png solsys_3d_struct2_000294.png solsys_3d_struct2_000295.png solsys_3d_struct2_000296.png solsys_3d_struct2_000297.png solsys_3d_struct2_000298.png</pre>	<pre>solsys_3d_struct2_000590.png solsys_3d_struct2_000591.png solsys_3d_struct2_000592.png solsys_3d_struct2_000593.png solsys_3d_struct2_000594.png solsys_3d_struct2_000595.png solsys_3d_struct2_000596.png solsys_3d_struct2_000597.png solsys_3d_struct2_000598.png</pre>
<pre>solsys_3d_struct2_000290.png solsys_3d_struct2_000291.png solsys_3d_struct2_000292.png solsys_3d_struct2_000293.png solsys_3d_struct2_000294.png solsys_3d_struct2_000295.png solsys_3d_struct2_000296.png solsys_3d_struct2_000297.png solsys_3d_struct2_000298.png solsys_3d_struct2_000299.png</pre>	<pre>solsys_3d_struct2_000590.png solsys_3d_struct2_000591.png solsys_3d_struct2_000592.png solsys_3d_struct2_000593.png solsys_3d_struct2_000594.png solsys_3d_struct2_000595.png solsys_3d_struct2_000596.png solsys_3d_struct2_000597.png solsys_3d_struct2_000598.png solsys_3d_struct2_000599.png</pre>

Now, you have 600 PNG files. Construct a MPEG-4 movie file from these 600 PNG files using the command ffmpeg.

```
% ffmpeg5 -f image2 -start_number 0 -framerate 30 -i solsys_3d_struct2_%06d.png \
? -an -vcodec libx264 -pix_fmt yuv420p -threads 8 solsys_3d_struct2.mp4
% ls -l *.mp4
-rw-r--r-- 1 daisuke taiwan 76168 Oct 3 00:13 ai202209_s04_33.mp4
-rw-r--r-- 1 daisuke taiwan 421164 Oct 3 00:21 ai202209_s04_37.mp4
-rw-r--r-- 1 daisuke taiwan 364013 Oct 2 23:42 solsys_3d_struct.mp4
-rw-r--r-- 1 daisuke taiwan 354186 Oct 3 00:30 solsys_3d_struct2.mp4
```

Play the movie file.

% mplayer solsys_3d_struct2.mp4

18.3 Making a movie of orbital motion of planets and 5000 asteroids

Make an animation of orbital motion of planets and 5000 asteroids.

```
Python Code 43: ai202209_s04_42.py
```

```
#!/usr/pkg/bin/python3.9
#
 Time-stamp: <2022/10/02 23:05:00 (CST) daisuke>
# importing sys module
import sys
# importing numpy module
import numpy
# importing astropy module
import astropy
import astropy.coordinates
import astropy.time
import astropy.units
# importing astroquery module
import astroquery.jplhorizons
# importing matplotlib module
import matplotlib.animation
import matplotlib.backends.backend_agg
import matplotlib.figure
# output file name prefix
file_prefix = 'solsys_3d_struct3'
# output file name extension
file_ext
           = 'png'
# units
u_au = astropy.units.au
u_hr = astropy.units.hour
# number of steps to calculate
n_steps = 5000
# number of asteroids to plot
n_{asteroids} = 5000
# step size in hr
step_hr = 12
step_str = f'{step_hr}h'
step
        = step_hr * u_hr
# an empty list for storing asteroids positions
list_asteroids = []
```

```
# date/time to start the simulation
t_start_str = f'2022-07-01T00:00:00.000'
# time to start the simulation in astropy.time object
t_start = astropy.time.Time (t_start_str, format='isot', scale='utc')
# time to stop the simulation in astropy.time object
t_stop = t_start + step * n_steps
# an empty list for storing major planets positions
list_major = []
# major body names (Sun, Mercury, Venus, Earth, Mars, Jupiter)
list_names = ['10', '199', '299', '399', '499', '599']
# getting positions of the Sun, Mercury, Venus, Earth, Mars, and Jupiter
# from JPL/Horizons
print (f'Now, getting positions of the Sun and planets...')
for i in list_names:
   print (i)
    query = astroquery.jplhorizons.Horizons (id_type=None, id=f'{i}', \
                                              location='00', \setminus
                                              epochs={'start': t_start.iso, \
                                                      'stop': t_stop.iso, \
                                                      'step': step_str})
   vec = query.vectors ()
   print (vec)
   x = vec['x']
   y = vec['y']
    z = vec['z']
    list_major.append ( [x, y, z] )
print (f'Finished getting positions of the Sun and planets!')
# getting asteroids positions from JPL/Horizons
print (f'Now, getting asteroids positions...')
for i in range (1, n_asteroids + 1):
    if (i % 10 == 0):
        print (f' now, getting positions of asteroid ({i})...')
    ast_query = astroquery.jplhorizons.Horizons (id_type='smallbody', \
                                                  id=f'{i}', \
                                                  location='00', \setminus
                                                  epochs={'start': t_start.iso, \
                                                          'stop': t_stop.iso, \
                                                          'step': step_str})
   ast_vec = ast_query.vectors ()
   x = ast_vec['x']
   y = ast_vec['y']
    z = ast_vec['z']
    list_asteroids.append ( [x, y, z] )
print (f'Finished getting asteroids positions...')
# making a fig object using object-oriented interface
fig = matplotlib.figure.Figure ()
fig.subplots_adjust (left=0.0, right=1.0, bottom=0.0, top=1.0)
# making a canvas object
canvas = matplotlib.backends.backend_agg.FigureCanvasAgg (fig)
```
```
# making an axes object
ax = fig.add_subplot (111, projection='3d')
# an empty list of frames for animation
list frame = []
# definition of a function for making a sphere
def make_sphere (x_c, y_c, z_c, radius, colour):
   u = numpy.linspace (0, 2 * numpy.pi, 1000)
   v = numpy.linspace (0, numpy.pi, 1000)
   x = radius * numpy.outer (numpy.cos(u), numpy.sin(v)) + x_c
   y = radius * numpy.outer (numpy.sin(u), numpy.sin(v)) + y_c
    z = radius * numpy.outer (numpy.ones(numpy.size(u)), numpy.cos(v)) + z_c
    # plotting the surface
    sphere = ax.plot_surface (x, y, z, color=colour, antialiased=False, \
                               shade=True, rcount=100, ccount=100)
    return (sphere)
# initial value of 'elev' angle
e10 = 90.0
# initial value of 'azim' angle
az0 = 0.0
for i in range (n_steps):
    # clearing previous axes
    ax.cla ()
    # camera viewing angle
    if (i < 200):
        el = el0
        az = az0
    elif ( (i >= 200) and (i < 1400) ):
        el = el0 - (i - 200) * 0.1
        az = az0
    elif ( (i >= 1400) and (i < 1600) ):
        e1 = -30.0
        az = az0
    elif ( (i >= 1600) and (i < 1900) ):
       el = -30 + (i - 1600) * 0.1
        az = az0
    elif ( (i >= 1900) and (i < 2100) ):
        e1 = 0.0
        az = az0
    elif ( (i >= 2100) and (i < 2700) ):
        el = (i - 2100) * 0.1
        az = az0
    elif ( (i >= 2700) and (i < 3600) ):
        e1 = 60.0
        az = 360.0 - (i - 2700) * 0.1
    elif ( (i >= 3600) and (i < 3800) ):
        e1 = 60.0
        az = 270.0
    elif ( (i >= 3800) and (i < 4700) ):
        e1 = 60.0
        az = 270.0 - (i - 3800) * 0.1
    else:
        e1 = 60.0
        az = 180.0
```

```
# time t
t = t_start + i * 12.0 * u_hr
# printing positions of the Sun, planets, and asteroids
if (i % 10 == 0):
    print (f'Now, making a plot for {t}...')
# settings for plot
ax.set_xlim (-6.0, +6.0)
ax.set_ylim (-6.0, +6.0)
ax.set_zlim (-2.0, +2.0)
ax.set_box_aspect ( (6.0, 6.0, 2.0) )
# viewing angles of camera
ax.view_init (elev=el, azim=az)
# using black background colour
fig.set_facecolor ('black')
ax.set_facecolor ('black')
ax.grid (False)
ax.w_xaxis.set_pane_color ((0.0, 0.0, 0.0, 0.0))
ax.w_yaxis.set_pane_color ((0.0, 0.0, 0.0, 0.0))
ax.w_zaxis.set_pane_color ((0.0, 0.0, 0.0, 0.0))
# plotting the Sun
sun = make_sphere (list_major[0][0][i], \
                    list_major[0][1][i], \setminus
                    list_major[0][2][i], \setminus
                    0.25, 'yellow')
# plotting Mercury
mercury = make_sphere (list_major[1][0][i], \
                        list_major[1][1][i], \setminus
                        list_major[1][2][i], \setminus
                        0.05, 'cyan')
# plotting Venus
venus = make_sphere (list_major[2][0][i], \
                      list_major[2][1][i], \
                      list_major[2][2][i], \
                      0.15, 'gold')
# plotting Earth
earth = make_sphere (list_major[3][0][i], \
                      list_major[3][1][i], \
                      list_major[3][2][i], \
                      0.15, 'blue')
# plotting Mars
mars = make_sphere (list_major[4][0][i], \
                     list_major[4][1][i], \setminus
                     list_major[4][2][i], \setminus
                     0.15, 'red')
# plotting Jupiter
jupiter = make_sphere (list_major[5][0][i], \
                        list_major[5][1][i], \setminus
                        list_major[5][2][i], \
```

```
0.15, 'bisque')
# plotting asteroids
for j in range (0, n_asteroids):
    asteroid = ax.scatter (list_asteroids[j][0][i], \
                            list_asteroids[j][1][i], \
                            list_asteroids[j][2][i], \
                            s = 0.1, \
                            color='saddlebrown')
# title
title = ax.text2D (0.5, 0.95, f'Inner Solar System', \
                    color='white', \setminus
                    horizontalalignment='center', \
                    transform=ax.transAxes)
# plotting the time
time = ax.text2D (0.5, 0.05, f'Date/Time: {t} (UTC)', \
                   color='white', \setminus
                   horizontalalignment='center', \
                   transform=ax.transAxes)
# image file
file_image = f'{file_prefix}_{i:06d}.{file_ext}'
fig.savefig (file_image, dpi=255)
```

Execute above script.

% ./ai202209_s04_42.py

Now, you have 5000 PNG files. Construct a MPEG-4 movie file from these 5000 PNG files using the command ffmpeg.

```
% ffmpeg5 -f image2 -start_number 0 -framerate 30 -i solsys_3d_struct3_%06d.png \
? -an -vcodec libx264 -pix_fmt yuv420p -threads 8 solsys_3d_struct3.mp4
% ls -l *.mp4
```

Play the movie file.

% mplayer solsys_3d_struct3.mp4

19 For your further reading

Read the official document of Matplotlib to learn more about it.

• Matplotlib: https://matplotlib.org/

20 Assignment

- 1. Visit the official website of Matplotlib.
 - Read "Examples", "Tutorials", and "Users Guide".
 - Summarise basic usage of Matplotlib.
- 2. Visit web page of Kamogata/Kiso/Kyoto Wide-field Survey.
 - http://kws.cetus-net.org/~maehara/VSdata.py

- (a) Search for V-band photometric measurements of Mira. Download the data, and make a lightcurve of Mira. Show the plot you made. Show the source code of your Python script.
- (b) Search for V-band photometric measurements of δ Cep. Download the data, and make a lightcurve of δ Cep. Show the plot you made. Show the source code of your Python script.
- (c) Search for V-band photometric measurements of RR Lyrae. Download the data, and make a lightcurve of RR Lyrae. Show the plot you made. Show the source code of your Python script.
- (d) Search for V-band photometric measurements of δ Sct. Download the data, and make a lightcurve of δ Sct. Show the plot you made. Show the source code of your Python script.
- (e) Search for V-band photometric measurements of T Tau. Download the data, and make a lightcurve of T Tau. Show the plot you made. Show the source code of your Python script.
- 3. Download Yale Bright Star Catalogue from following website.
 - http://cdsarc.u-strasbg.fr/viz-bin/Cat?V/50
 - (a) Make a histogram of V-band apparent magnitude distribution of stars in Yale Bright Star Catalogue. Show the histogram you made. Show the source code of your Python script.
 - (b) Make a histogram of (U B) colour index distribution of stars in Yale Bright Star Catalogue. Show the histogram you made. Show the source code of your Python script.
 - (c) Make a histogram of (B V) colour index distribution of stars in Yale Bright Star Catalogue. Show the histogram you made. Show the source code of your Python script.
 - (d) Make a histogram of (R I) colour index distribution of stars in Yale Bright Star Catalogue. Show the histogram you made. Show the source code of your Python script.
 - (e) Make a histogram of distance distribution of stars in Yale Bright Star Catalogue. Show the histogram you made. Show the source code of your Python script.
 - (f) Make a histogram of Galactic latitude distribution of stars in Yale Bright Star Catalogue. Show the histogram you made. Show the source code of your Python script.
 - (g) Make a histogram of Galactic longitude distribution of stars in Yale Bright Star Catalogue. Show the histogram you made. Show the source code of your Python script.
- 4. Visit following website and download Hipparcos catalogue.
 - https://cdsarc.unistra.fr/viz-bin/cat/I/311
 - (a) Make a Python script to extract information from Hipparcos catalogue.
 - (b) Make a simple HR-diagram. Show the diagram you made. Show the source code of your Python script.
 - (c) Use different marker size for different apparent brightness of star, and update your HR-diagram. Show the diagram you made. Show the source code of your Python script.
 - (d) Which area on the plot do you expect to find main-sequence stars? Explain why.
 - (e) Which area on the plot do you expect to find horizontal branch stars? Explain why.
 - (f) Which area on the plot do you expect to find AGB stars? Explain why.
 - (g) Which area on the plot do you expect to find giants? Explain why.
 - (h) Which area on the plot do you expect to find white dwarfs? Explain why.
 - (i) Which area on the plot do you expect to find brown dwarfs? Explain why.
 - (j) Which area on the plot do you expect to find Cephieds? Explain why.
 - (k) Which area on the plot do you expect to find RR Lyrae? Explain why.
 - (l) Explain what you can learn from the plot.