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1 Kepler’s Laws of Planetary Motion

1.1 First law

All planets move along elliptical path with the Sun at one focus. (Fig. 1)
Heliocentric distance of a planet r¢ can be expressed as
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Here, a is semimajor axis, e is eccentricity, and f is true anomaly, respectively.
Figure 1: An ellipitical orbit of a planet.

1.2 Second law
A line connecting any given planet and the Sun sweeps out area S at a constant rate.
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1.3 Third law

The square of a planet’s orbital period about the Sun P, in year is equal to the cube of its semimajor
axis a4, in au.

2 _ 3
P =ay, (3)
2 2-Dimentional Polar Coordinate
The relationship between 2-dimentional Cartesian coordinate (z,y) and polar coordinate (r, 6) is

xr = rcosb, (4)
= rsin. (5)



Figure 2: Kepler’s second law of planetary motion.

Now, we differntiate x and y with respect to the time ¢. Then, we obtain followings.
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By adding the equation 11 to the equation 10, we get

icosf + jjsind = (7 — r6?).



Similarly, we make & siné and ¢ cos .

isind = (¥ —rf%)sinfcosf — (rf + 2rf) sin’ 0 (13)
jeos® = (i —r62)sindcosd + (10 + 270) cos® 0 (14)

By subtracting the equation 14 from the equation 13, we get

isin® — jjcos = —(rf + 270). (15)

3 Equation of Motion
The equation of motion using the 2-D Cartesian coordinate can be written as

mi = Fy, (16)
my = Fy. (17)
Here, m is the mass of a planet, F; is the force acting on a planet in z direction, and F, is the force

acting on a planet in y direction. We consider to express r and 6 components of the force in 2-D polar
coordinate. From Fig. 3, F, and Fy are expressed as

F. = Fycosf+ F,sind, (18)
Fy = —Fysinf+ Fycosf. (19)

From the equations 18 and 19, we get
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Figure 3: The force in Cartesian and polar coordinates.

F.cos = F,cos’0+ F, sinfcosd (20)
Fysin = —F,sin”>0+ F,sinfcosf. (21)

Subtracting one from other, and we have

F, = F, cosf — Fysinf (22)

Similarly, we get
F.sin = F,sinfcosf+ F,sin0 (23)
Fypcos® = —Fysinfcosf+ Fy cos? 6. (24)



Adding these two equation, and we have
F, = F,sinf + Fycosf (25)
The equation of motion is now written as

mi = F.cosf — Fysinf, (26)
mi = F.sinf+ Fpcosé. (27)

Making md cos @ and mgjsin 6, we obtain

micosf = F,cos?>— Fysinfcosb, (28)
mijsin@ = F,sin?60+ Fysinfcos6. (29)

By adding these two equations, we get
m(i cos + jsinf) = F. (30)
Similarly, making m sin 0 and mgj cos 6, we obtain

mising = F.sinfcosf — Fpsin®0), (31)
mijcos = F,sinfcosf + Fycos® 0. (32)

By subtracting one from the other, we get

m(Esinf — §cosf) = —Fy. (33)
Using the results of previous section, we have
m(it —r6%) = F,, (34)
m(rf + 270) = Fy. (35)
d /o5,
Now, we calculate — (r 9).
dt
i (TQQ) = 2r70 +r%0
dt
= r(rf + 2r0) (36)
Therefore, we get
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The equation 35 is now rewritten as
mli (7’29) =Fy (38)
rdt '

The gravitational force is a central force, and the § component of the gravitational force is always
zero if the origin of the coordinate is chosen to be the location of the Sun.

Fy=0 (39)
Then, the equation 38 is now written as
1d/4;
~2 (r%6) = 0. 10
e (T (40)
By integrating this equation, we yeild .
20 = h. (41)

Here, h is a constant. This is Kepler’s second law. Note that the area that is swept by a line connecting

1 ..
a planet and the Sun in a short time At is 57*29. (Fig. 4)

From the equation 41, we get

: h
0 = 5
. h2
2 _
0 = -
h2
rg* = 3 (42)



Figure 4: The area that is swept out by a line connecting a planet and the Sun.

r dé/ dt

The gravitational force acting on the planet located at the distance of r from the Sun is shown as

F. = fG]\gm.
T

(43)

Here, G is the gravitational constant, M is the mass of the Sun, and m is the mass of a planet, respectively.

From the equation 34, we have

. . GMm
m(# —r6?) = — .
We devide both sides of the equation by m.
: GM
.. 2
T — T9 = — 7“—2
Then, we multiply both sides of the equation by .
: M
i — rr0? = 702 7
r
Here, we know following relations.
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Therefore, the equation 46 can now be written as
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We move all the terms to the left hand side of the equation.
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dt |2 2 72 r

By integrating the equation, we obtain

Lo, 1h* GM _

= E.
2" T2 r

Here, E is a constant. Now, we have
1 1,5 GM
—i? 4 =r?0? - — = F.
2 2 T

This is actually the equation for the conservation of energy.
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4 Use of new variables ¢ and s

Here, we introduce new variables ¢ and s.

d_hd
dt  r2d
1
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The relationship between dr/dt and ds/dp can be written as

dr_ drds
dt ds dt
h d
s
dp

TQ%

Now, we rewrite the equation of energy conservation using ¢ and s.

Here, we use a new variable s’.

We now have
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To integrate above equation, we use following formula.

We first prove this formula. For x = acos®, it is

and, therefore, we have

/dix C o cos! (z
[a2 — 22 a
cosf = E,
a
6 = cos (E) .
a
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The term va? — 22 can be written as

a2

We differentiate x with respect to 6.

Now, we get

1
a2 — 12

We integrate dep.

We modify the equation as follows.
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We finally get
h2
r= GM . (72)
2Eh?
1+ 1+WCOS(@—w)

Note that the equation for an ellipse can be expressed as

l

"= 1+ ecosb

using the polar coordinate (r,8).

5 Equation of an ellipse

Definition of ellipse: a closed plane curve generated by a point moving in such a way that the sums of its
distances from two fixed points (foci or focal points) is a constant. (Fig. 5)

P (x,y)

Figure 5: Definition of ellipse.

We start from the definition of ellipse, and show the equations of ellipse. The definition is
r 41’ = 2a. (74)

r and r’ are

= Ve PR (75)

r=+/(c+z)?+1y2 (76)

From the definition, we get
Vie—2)2+ 92 +/(c+2)? + 92 = 2a. (77)

We modify this equation.
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