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An example

@ We take a look at following paper as an example.
o Astronomy & Astrophysics (Volume 653, September 2021)

e “Composition of organics on asteroid (101955) Bennu”
o Kaplan et al., 2021, A&A, 653, L1.
@ https://doi.org/10.1051/0004-6361/202141167

o If you use ADS to find the paper, try following.
title:”bennu” author:” “kaplan” bibstem:” a&a”
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ABSTRACT

Context. The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission
detected an infrared absorption at 3.4 um on near-Earth asteroid (101955) Bennu. This absorption is indicative of carbon species,

including organics, on the surface.

Aims. We aim to describe the composition of the organic matter on Bennu by investigating the spectral features in detail.
Methods. We use a curated set of spectra acquired by the OSIRIS-REx Visible and InfraRed Spectrometer that have features near
3.4um (3.2 to 3.6 um) attributed to organics. We assess the shapes and strengths of these absorptions in the context of laboratory

spectra of extraterrestrial organics and analogs.

Results. We find spectral evidence of aromatic and aliphatic CH bonds. The absorptions are broadly consistent in shape and depth
with those associated with insoluble organic matter in meteorites. Given the thermal and space weathering environments on Bennu, it
is likely that the organics have not been exposed for long enough to substantially decrease the H/C and destroy all aliphatic molecules.

Key words. minor planets, asteroids: individual: (101955) Bennu — techniques: spectroscopic — planets and satellites: composition

1. Introduction

The Origins, Spectral Interpretation, Resource Identification,
and Security-Regolith Explorer (OSIRIS-REx) mission detected
carbon species, including organics and carbonates, on near-
Earth asteroid (101955) Bennu (Kaplan et al. 2020; Simon et al.
2020a). These findings, based on the presence of an infrared
absorption near 3.4 um, indicate that the sample of Bennu’s
regolith that the OSIRIS-REx spacecraft will return to Earth

isuke (Institute of Astr
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total carbon in organic and inorganic forms (Pearson et al. 2006;
Alexander et al. 2012; Sephton 2002). The majority of the mete-
oritic carbon (>70wt.%) is hosted in insoluble organic mat-
ter (IOM): an acid-insoluble kerogen-like macromolecule that
is structurally complex, with variable isotopic and elemental
compositions (Cody & Alexander 2005; Alexander et al. 2017).
The soluble organic matter (SOM) represents a much smaller
fraction (up to 0.1%) of the total carbon, with the remain-
der of carbon either unaccounted for with current techniques
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Structure of main body of a paper

@ Structure of main body of a paper

Introduction

Observations or calculations or mathematical derivations
Results

Discussion

Conclusions

@ Basically, structure of a paper is similar to that of a scientific report.
o Introduction

Methods

Results

Discussion

Conclusions

@ You have written many scientific reports after doing experiments
when you were undergraduate students, right?
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with those associated with insoluble organic matter in meteorites. Given the thermal and space weathering environments on Bennu, it
is likely that the organics have not been exposed for long enough to substantially decrease the H/C and destroy all aliphatic molecules.

Key words. minor planets, asteroids: individual: (101955) Bennu — techniques: spectroscopic — planets and satellites: composition

1. Introduction

The Origins, Spectral Interpretation, Resource Identification,
and Security-Regolith Explorer (OSIRIS-REx) mission detected
carbon species, including organics and carbonates, on near-
Earth asteroid (101955) Bennu (Kaplan et al. 2020; Simon et al.
2020a). These findings, based on the presence of an infrared
absorption near 3.4um, indicate that the sample of Bennu’s
regolith that the OSIRIS-REx spacecraft will return to Earth
in 2023 (Lauretta et al. 2021, 2017) is likely to contain carbon-
bearing material. The organic component may hold clues to the
conditions of the early Solar System and the origins of life on
Earth (e.g., Chyba et al. 1990).

Bennu has been spectrally linked to aqueously altered
CI- and CM-type carbonaceous chondrites (Clark et al. 2011;
Hamilton et al. 2019); these primitive carbon-rich meteorites are
likely the closest analogs of Bennu currently available for lab-
oratory studies. CI and CM chondrites contain 1 to 5wt.%

total carbon in organic and inorganic forms (Pearson et al. 2006;
Alexander et al. 2012; Sephton 2002). The majority of the mete-
oritic carbon (>70wt.%) is hosted in insoluble organic mat-
ter (IOM): an acid-insoluble kerogen-like macromolecule that
is structurally complex, with variable isotopic and elemental
compositions (Cody & Alexander 2005; Alexander et al. 2017).
The soluble organic matter (SOM) represents a much smaller
fraction (up to 0.1%) of the total carbon, with the remain-
der of carbon either unaccounted for with current techniques
or contained in inorganic forms (e.g., carbonates and nanodia-
monds). Meteoritic SOM can be highly complex, with a variety
of different compound classes, such as amino acids, carboxylic
acids, hydroxy acids, amines, alcohols, aldehydes, ketones,
N-heterocycles, polyols, aliphatic and aromatic hydrocarbons,
and sugars (e.g., Glavin et al. 2018).

Most of the meteoritic organic matter likely originated in
the interstellar medium or in the colder regions of the proto-
planetary disk before being incorporated into the earliest Solar

L1, page L of 11
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Observations and Results parts of a paper

groups have been attributed to nebular processes, thermal and/or
aqueous alteration of the parent body (e.g., Herd etal. 2011;
Alexander et al. 2007; Glavin et al. 2010), and surface modifi-
cation, such as space weathering (e.g., Thompson et al. 2020).

2. Observations and methods

The OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS;
Reuter et al. 2018) has a circular, 4 mrad field of view. It col-
lected tens of thousands of spectra of Bennu with wavelengths
from 0.4 to 4.3 um. In the wavelength region near 3.4 um (3.2
to 3.6 um), there are at least four absorption characteristic of
organic carbon, resulting from the symmetric and asymmet-
ric stretching modes of methyl (-CH3) and methylene (-CH,)
groups (i.e., aliphatic CH; e.g., Allen & Wickramasinghe 1981;
Pendleton 1995).

‘We analyzed spectra collected during the sample site recon-
naissance (Recon A) phase of the OSIRIS-REx mission in
October 2019 (Lauretta et al. 2021, 2017). The Recon A data
set in this study comprises 15585 photometrically corrected
OVIRS spectra that cover 10% of the surface; it focuses on
regions of interest, including the Nightingale site (Hokioi crater),
where OSIRIS-REx collected its sample (see Appendix A for
more observation details and coverage map). We used these
data, rather than the global-coverage data set at 20 m per foot-
print (Simon et al. 2020a), because the spatial resolution (4—5m
cross-track and 7-10m along-track) is optimized to isolate

at 3.42um has been linked to the composition and concen-
tration of organic matter in sedimentary rocks and meteorites
(e.g., Herron etal. 2014; Kaplan & Milliken 2018). For IOM
extracted from carbonaceous chondrites, band depth is positively
correlated with the hydrogen-to-carbon ratio (H/C; Kaplan et al.
2019). If there is not enough hydrogen in the organics (i.e.,
H/C <0.3), there will be no absorption at 3.42um. For IOM
in bulk rock (i.e., meteorites), the absolute concentration is
also important: >1wt.% C is needed to observe an absorp-
tion at 3.42um (Kaplan et al. 2019). Most CMs and Cls con-
tain 1-3wt.% C and have bulk H/C ratios in the IOM > 0.5
(Alexander et al. 2007).

3. Results
3.1. Spectral features

Most OVIRS spectra appear to be a mixture of organic and
carbonate material, which is not suitable for our analysis. In
total, only 237 of the 15585 spectra analyzed are well fit by
the organic laboratory spectra described in Sect. 2 (y* < 2;
see Appendix A). We refer to these hereafter as organic-rich
spectra because they have absorption band positions and widths
that match laboratory organic spectra (Fig. 1). These organic-
rich spectra are distributed across the asteroid surface (i.e., are
not concentrated in any given region), suggesting a wide spatial
distribution of organics (Ferrone et al. 2021). The spectral fea-
tures themselves are not homogenous and have varying absorp-
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4. Discussion

The spectral features from 2.9 to 3.6 um observed on Bennu
allow us to compare this asteroid to other extraterrestrial set-
tings. The OVIRS data are comparable to the spectra seen in
the diffuse interstellar medium (Allen & Wickramasinghe 1981;
Sandford et al. 1991), comet 67P (Raponi et al. 2020), and mul-
tiple large main-belt asteroids (Simon et al. 2020a). We find
that carbonaceous chondrite IOM is the closest laboratory ana-
log to Bennu’s organics based on the available spectral data at
the wavelengths covered by the OVIRS instrument. This find-
ing strength the previously described connection between
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Fig. 2. Laboratory spectral matches for organic spectral shapes observed
on Bennu. The most common spectral shapes in the Bennu spectra that
we analyzed are well matched with spectra of meteorite IOM. («) and
(c) Best fits in the 3.1 to 3.6 um region between the OVIRS spectra
(black) and the IOM spectra (red, solid), with noised added to simulate
OVIRS nnice (rod

Aached): the enectra are narmalized fram 0 ta 1 and

Bennu and carbonaceous chondrite meteorites (Clark et al. 2011;
Hamilton et al. 2019, 2021). The macroscale heterogeneity of
the organic-rich spectra of Bennu has not been observed else-
where in the Solar System (potentially owing to a lack of space-
craft data in most cases) but is mirrored in the large heterogeneity
seen at small scales in meteorite organics (e.g., Alexander et al.
2017).

The organics on Bennu may reflect heterogenous aque-
ous alteration conditions. Although aqueous alteration has been
reported to decrease H/C (Herd etal. 2011), the modification
of organics is primarily controlled by heating (Alexander et al.
2014; Quirico et al. 2018), and the variation in H/C and C wt.%
estimated for organic-rich OVIRS spectra may be the result of
variable heating (Fig. 3). Typically, higher H/C values are also
associated with higher N/C, O/C, and bulk C (Alexander et al.
2007). Though spectra with a feature near 3.1 um may indicate

NSeminar 1 Session 03: Structure of a scientif 12 /41
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2021). Thus, the space weathering of organics may result in com-
petitive spectral trends, depending on the dominant constituent
processes, initial composition, and/or the timescales of surface
exposure.

The potential for the rapid breakdown of aliphatic organ-
ics would indicate that where these compounds are observed
on Bennu, the surface has been exposed for a relatively short
period of time. Spectrophotometric studies suggest that Bennu’s
small craters may be less than tens of thousands of years
old (DellaGiustina et al. 2020). In addition, evidence of parti-
cle ejection and re-impact (Lauretta et al. 2019) and thermally
driven fracturing (Molaro et al. 2020) on Bennu indicates that
ongoing surface processes are continually exposing fresh mate-
rial at the surface.

5. Conclusions

The detection of organic matter on asteroid Bennu using the
OVIRS instrument on board the OSIRIS-REx spacecraft pro-
vides a preview of the composition of the sample that will be
returned to Earth in 2023. Spectral features near 3.4 pm, includ-
ing a strong absorption minimum between 3.38 and 3.42um
and a possible shoulder at 3.3 um, are indicative of aliphatic
and aromatic CH with a maximum H/C of 0.6 and a minimum
H/C of 0.3. The overall spectral shape in the OVIRS data is
most comparable to meteorite IOM, as opposed to other organic

NSeminar 1 Session 03:

soluble organic diversity and composition.
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schedule in the OSIRIS-REx Data Management Plan, available in the OSIRIS-
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Fig. 1. Evidence of organics on Bennu in spectral features near 3.4 um. (@) Average OVIRS spectrum of Bennu (red) and two OVIRS spectra
of Bennu with spectral features near 3.4 um. (b) Close-up of the continuum-removed region around 3.4 jum, offset, with wavelengths of C-H
absorptions indicated by vertical gray lines. The top three spectra are the same as those shown in panel a. The shaded region indicates uncertainties,
and the vertical lines at 3.10, 3.275, 3.38, 3.42, and 3.50 jum indicate positions of possible absorption features. (c) Laboratory spectra near 3.4 um
for comparison. Black lines are the spectra, and colors are spectra with noise added to simulate OVIRS noise. “CB” stands for “Cold Bokkeveld”,
“bulk” refers to the whole meteorite, and “IOM” refers to the extracted insoluble organic component.
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Table 3. Molecular surface density at 250 au derived with DiskFit. Table 4. Molecular abundance with respect to *CO: 10° X (Xp01/X13¢0)-

Molecules Surface density  Molecules Surface density Mol IMCT  CHcely CGTs Mol IMCT LiGuly GGTa
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HeN U SLOXI0 e U £10%10 Notes. “’For para-H,CO only in GG Tau. Since estimating the uncer-
HC"N U <29x 10" HDO U <1.9x 10 o oo - . . "
HNC D G4 ::.t\ 03 x 1012 DN D @7 -3107) <10l tainties from all of these different studies was very difficult, we do not
HNSC U <17x 101 D,CO U <16 x 1010 quote them for TMC1 and LkCals.
HCO* D (150+00hx10% DCO' M (22+07)x 10" References. (' Dutrey et al. (1997), ?Omont (2007), ®Cernicharo et al.
HBCO* D 40+02)x 10!  pHCO D (36+02)x 102 (2021), “Liszt & Ziurys (2012), ©Butner et al. (1995), © Turner (2001),
HOC* u <32x 100 cCiH, U <1.0x 1012 DQietal. (2003), ®Guilloteauetal. (2016), @Loomisetal. (2020),
HCNH* U <22x108 HGN D (4+1D)x10" (19 e Gal et al. 2019), "V Huang et al. (2017), "> Chapillon et al. (2012),
HCCCHO U <1.4x 107 CH;CN U <25x 10" ‘”‘Phuongel al. (2018).
s D (1.0+0.1)x 107

Notes. The temperature uncertainty only affects the derived densities by
factors smaller than 2. D = detected, U = undetected, and M = marginal
detected To=15K for S-bearing species, and 7y =25K for all other
molecules. ' The values are taken from Phuong et al. (2020).
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4. Discussion
4.1. Sulphur in protoplanetary disk: First detection of CCS

Beyond CS, only a few S-bearing species observed in molecular
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Format of references

o An example
o Alexander, C. M. O., Fogel, M., Yabuta, H., & Cody, G. 2007,
Geochim. Cosmochim. Acta, 71, 4380

o information: author names, publication year, journal name, volume
number, page number.

@ The paper is written by Alexander, Fogel, Yabuta, and Cody.

@ The paper was published in 2007.

@ The paper was published on the journal “Geochimica et Cosmochimica
Acta”

@ The paper is on the volume number 71.

@ The paper is on the page number 4380.
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How to find this paper?

@ paper
o Alexander, C. M. O., Fogel, M., Yabuta, H., & Cody, G. 2007,
Geochim. Cosmochim. Acta, 71, 4380
@ How to find this paper?
o Go to journal website.
o Jump to the volume 71.
o Find a paper starting at page 4380.
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H. H. Kaplan et al.: Composition of organics on asteroid (101955) Bennu

Appendix A: Supplementary material
A.1. Additional information on the data set

We used OVIRS spectra from the Recon A phase of the
OSIRIS-REx mission, specifically those that were collected
on four separate dates in October 2019 (Reuter et al. 2019).
These observations covered the mission’s primary sample col-
lection site, Nightingale, and three other candidate sample sites
(Lauretta et al. 2021), as well as a few other areas of interest that
were observed by opportunity. The spacecraft scanned the sur-
face from a 1 km range with varying phase angles; the scan pat-
terns are shown in Fig. A.1. OVIRS data collected during Recon
A have a spatial resolution of 4 to 5 m cross-track and 7 to 10 m
along-track (36 m?).

A.2. Methods: Calibration and data processing

Full details of the calibration pipeline are described in
Simon et al. (2018). Briefly, each OVIRS spectrum comprises
five segments collected from separate linear variable filters, with
overlapping wavelengths that are resampled to create a con-
tinuous spectrum from 0.39 to 4.3 um (Reuter et al. 2018). A
thermal tail is subtracted from calibrated radiance (resampled)
spectra, and the result is divided by solar flux to obtain
reflectance (I/F; Simon et al. 2020a). Thermal fill-in can occur

for the sake of direct comparison (Tables A.2 and A.3). These
spectra are all previously published, and references can be found
in the main text. To compare spectral shape rather than feature
strength, we normalized each continuum-removed spectrum to
have a maximum value of 1 and a minimum value of 0 (Fig.
2). All analyses were performed on unsmoothed spacecraft data
and reflect the noise inherent in spacecraft data; Figs. 1 and 2
also show spectra smoothed to demonstrate the likely underly-
ing shape.

We used two previously tested methods to separate organic
(CH) absorptions near 3.4 um from the carbonate (COj3) absorp-
tions that are found at similar wavelengths to obtain the organic-
rich group of spectra (Kaplan et al. 2020; Ferrone et al. 2021);
both methods resulted in similar rates of organic and carbon-
ate identification for the Recon A data set (Ferrone et al. 2021).
The first method is linear least-squares fitting, in which we com-
pared (unsmoothed) OVIRS spectra and laboratory spectra (at
their native S/N but resampled to OVIRS spectral resolution) on
a channel-by-channel basis from 2.9 to 3.6 um to find the lab-
oratory spectrum that best fits the shape of the organic features
observed in our Recon A data set. We assessed the goodness of fit
with a y? statistic (Kaplan et al. 2020, Fig. A.4). Recon A spec-
tra that were fit by one of the organic laboratory spectra with a y*
value < 2 were designated as organic-rich for this study, which
resulted in 237 used for further analyses (e.g., in Fig. 3). The full
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Structure of a paper

@ beginning part
o title
e authors’ names
o affiliations and addresses
o abstract
o keywords

@ main body

introduction

observations or calculations or mathematical derivations
results

discussion

conclusions

@ last part
o acknowledgements
o references
e appendix
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Structure of a paper

@ Read following paper to understand the structure of a paper.

o Claude Bertout and Peter Schneider, 2005, A&A, 441, E3.
e https://doi.org/10.1051/0004-6361:20054137
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Structure of a paper
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Introduction (1)

Confronted with a huge volume of new information every week,
researchers in the physical sciences can no longer read all the
literature that is published on scientific matters that interest them.
The paper’s abstract, undoubtedly the most visible part of any
scientific article, has therefore in recent years become particularly
important as a filter for deciding what articles are worth taking
the time to read in detail. This is particularly true for astrophysics
articles, since the abstract is referenced and widely accessible in
the NASA Astrophysics Data Service, in topical newsletters, and
in other abstract databases.
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uction (2)

Whether a colleague will read your paper or not thus depends in
large measure on the level of interest that is gained from reading
your paper’s abstract. When writing it, one must therefore make
sure that it conveys the essential elements of the article to the
reader: its objective, the methods used to reach it, and the results
obtained. This must be done in a concise yet informative way,
without using external references that will not be referenced in
the abstract databases. Finally, the style must be pleasing.
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uction (3)

While editing A&A articles, we have become aware that the ab-
stracts of published papers have not always fulfilled the criteria
given above. Sometimes an abstract will be so concise and spe-
cialized that only the few people working in the paper’s specific
research field are able to understand the significance of results
obtained by the author. At other times, the abstract goes into
unnecessary detail and becomes much too unwieldy. We have also
seen cases where the abstract does not reflect the paper’'s con-
tents, either because some important results are not mentioned
or because results presented in the abstract are not substantiated
in the text of the paper. Of course, these extreme cases remain
relatively rare, but we nonetheless concluded from studying a large
number of A&A abstracts that in most cases, they could be writ-
ten in a clearer and more informative way.
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Introduction (4)

This is why we are introducing the concept of structured abstracts
for A&A papers. The following will hopefully be able to convince
you that the information content, readability, and style of your
abstracts will be vastly improved by adopting the simple rules of
structured abstracts, thereby increasing the impact of your articles.
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What are structured abstracts? (1)

As with a traditional abstract, a structured abstract summarizes
the contents of the paper, but it also makes the structure of the
article explicit and visible. To accomplish this, the structured ab-
stract uses headings that define each of several short paragraphs
and that reflect the particular needs of the discipline. For astron-
omy papers, we propose to use three mandatory paragraphs as
the core of the structured abstract, entitled, respectively, Aims,
Methods, and Results. When appropriate, the structured abstract
may use an introductory paragraph entitled Context, and a final
paragraph entitled Conclusions. While these headings are self-
explanatory, one should emphasize that there is no redundancy
between them. For example, the Aims paragraph describes the
objectives of the paper, while Context explains the reasons for the
current investigation and may give background. Similarly, Results
summarizes the results found in the paper, while Conclusions ex-
plains the significance of the results in a more general framework.
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What are structured abstracts? (2)

Although structured abstracts are now mandatory in most med-
ical research journals and are also successfully used in the social
sciences, they have so far attracted little attention in the physi-
cal sciences. We note, however, that the astronomical community
already uses structured documents, such as the well-known ESO
Observing Proposal. Many other observing and grant proposal
formats make use of structured contents, so the principle is not
new to astronomers.
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ructured abstract

@ Context

e reasons for the current investigation
e background

o Aims
o objectives

@ Methods

@ Results
@ Conclusions
e significance of the results
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Today's Exercise #2

@ Go to Astrophysical Journal website.
e https://iopscience.iop.org/journal/0004-637X

@ Visit the Volume 936 of ApJ.

o https://iopscience.iop.org/volume/0004-637X/936
Visit the Issue Number 1 (1 September 2022).

o https://iopscience.iop.org/issue/0004-637X/936/1
Pick a paper.
Read the abstract of the paper you have picked.
Analyse the abstract.

o What is the context of the paper?

o What is the aims of the paper?

o What is the methods of the paper?

o What is the results of the paper?

o What is the conclusions of the paper?

Tell us the results of your analysis.

Tell me if you have any difficulty for doing this exercise.
@ When finished, tell me so.
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Today's Exercises #1 and #2

o Visit the Google Forms and submit the material.
o Make a single PDF file and write down your answers for both Exercise
#1 and #2.
o Submit your results by 10:00 on 28/Sep/2022.

e Link to Google Form:
https://s3b.astro.ncu.edu.tw/seminarl_202209/
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